Non-Destructive Evaluation (NDE) of Polymer Matrix Composites


Book Description

The increased use of polymer matrix composites in structural applications has led to the growing need for a very high level of quality control and testing of products to ensure and monitor performance over time. Non-destructive evaluation (NDE) of polymer matrix composites explores a range of NDE techniques and the use of these techniques in a variety of application areas.Part one provides an overview of a range of NDE and NDT techniques including eddy current testing, shearography, ultrasonics, acoustic emission, and dielectrics. Part two highlights the use of NDE techniques for adhesively bonded applications. Part three focuses on NDE techniques for aerospace applications including the evaluation of aerospace composites for impact damage and flaw characterisation. Finally, the use of traditional and emerging NDE techniques in civil and marine applications is explored in part four.With its distinguished editor and international team of expert contributors, Non-destructive evaluation (NDE) of polymer matrix composites is a technical resource for researchers and engineers using polymer matrix composites, professionals requiring an understanding of non-destructive evaluation techniques, and academics interested in this field. - Explores a range of NDE and NDT techniques and considers future trends - Examines in detail NDE techniques for adhesively bonded applications - Discusses NDE techniques in aerospace applications including detecting impact damage, ultrasonic techniques and structural health monitoring




Non-Destructive Evaluation (Nde) of Polymer Matrix Composites


Book Description

The increased use of polymer matrix composites in structural applications has led to the growing need for a very high level of quality control and testing of products to ensure and monitor performance over time. Non-destructive evaluation (NDE) of polymer matrix composites explores a range of NDE techniques and the use of these techniques in a variety of application areas. Part one provides an overview of a range of NDE and NDT techniques including eddy current testing, shearography, ultrasonics, acoustic emission, and dielectrics. Part two highlights the use of NDE techniques for adhesively bonded applications. Part three focuses on NDE techniques for aerospace applications including the evaluation of aerospace composites for impact damage and flaw characterisation. Finally, the use of traditional and emerging NDE techniques in civil and marine applications is explored in part four. With its distinguished editor and international team of expert contributors, Non-destructive evaluation (NDE) of polymer matrix composites is a technical resource for researchers and engineers using polymer matrix composites, professionals requiring an understanding of non-destructive evaluation techniques, and academics interested in this field. Explores a range of NDE and NDT techniques and considers future trends Examines in detail NDE techniques for adhesively bonded applications Discusses NDE techniques in aerospace applications including detecting impact damage, ultrasonic techniques and structural health monitoring




Handbook of Composites


Book Description

Today, fiber reinforced composites are in use • properties of different component (fiber, in a variety of structures, ranging from space matrix, filler) materials; craft and aircraft to buildings and bridges. • manufacturing techniques; This wide use of composites has been facili • analysis and design; tated by the introduction of new materials, • testing; improvements in manufacturing processes • mechanically fastened and bonded joints; and developments of new analytical and test • repair; ing methods. Unfortunately, information on • damage tolerance; these topics is scattered in journal articles, in • environmental effects; conference and symposium proceedings, in and disposal; • health, safety, reuse, workshop notes, and in government and com • applications in: pany reports. This proliferation of the source - aircraft and spacecraft; material, coupled with the fact that some of - land transportation; the relevant publications are hard to find or - marine environments; are restricted, makes it difficult to identify and - biotechnology; obtain the up-to-date knowledge needed to - construction and infrastructure; utilize composites to their full advantage. - sporting goods. This book intends to overcome these diffi Each chapter, written by a recognized expert, culties by presenting, in a single volume, is self-contained, and contains many of the many of the recent advances in the field of 'state-of-the-art' techniques reqUired for prac composite materials. The main focus of this tical applications of composites.




Materials Characterization Using Nondestructive Evaluation (NDE) Methods


Book Description

Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. - Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques - Reviews the determination of microstructural and mechanical properties - Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries - Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials




Residual Stresses in Composite Materials


Book Description

Residual stresses are a common phenomenon in composite materials. They can either add to or significantly reduce material strength. Because of the increasing demand for high-strength, light-weight materials such as composites and their wide range of applications in the aerospace and automotive industries, in civil infrastructure and in sporting applications, it is critical that the residual stresses of composite materials are understood and measured correctly.The first part of this important book reviews destructive and non-destructive testing (NDT) techniques for measuring residual stresses. Various mathematical (analytical and numerical) methods for calculation of residual stresses in composite materials are also presented. Chapters in the first section of the book discuss the simulated hole drilling method, the slitting/crack compliance method, measuring residual stresses in homogeneous and composite glass materials using photoelastic techniques, and modeling residual stresses in composite materials. The second part of the book discusses residual stresses in polymer matrix, metal-matrix and a range of other types of composites. Moreover, the addition of nanoparticles to the matrix of polymeric composites as a new technique for reduction of residual stresses is discussed.Residual stresses in composite materials provides a comprehensive overview of this important topic, and is an invaluable reference text for both academics and professionals working in the mechanical engineering, civil engineering, aerospace, automotive, marine and sporting industries. - Reviews destructive and non-destructive testing (NDT) techniques for measuring residual stresses - Discusses residual stresses in polymer matrix, metal-matrix and other types of composite - Considers the addition of nanoparticles to the matrix of polymeric composites as a new technique for reduction of residual stresses




Non-destructive Testing of Materials in Civil Engineering


Book Description

This book was proposed and organized as a means to present recent developments in the field of nondestructive testing of materials in civil engineering. For this reason, the articles highlighted in this editorial relate to different aspects of nondestructive testing of different materials in civil engineering—from building materials to building structures. The current trend in the development of nondestructive testing of materials in civil engineering is mainly concerned with the detection of flaws and defects in concrete elements and structures, and acoustic methods predominate in this field. As in medicine, the trend is towards designing test equipment that allows one to obtain a picture of the inside of the tested element and materials. From this point of view, interesting results with significance for building practices have been obtained




Nondestructive Characterization of Materials


Book Description

Engineering structures for reliable function and safety have to be designed such that operational mechanical loads are compensated for by stresses in the components bearable by the materials used. Vhat is "bearable"? First of all it depends on the properties of the chosen materials as well as on several other parameters, e.g. temperature, corrosivity of the environment, elapsed or remaining serviceable life, unexpected deterioration of materials, whatever the source and nature of such deterioration may be: defects, loss of strength, embrittlement, wastage, etc. DEFECTS and PROPERTIES of materials currently determine loadability. Therefore in addition to nondestructive testing for defects there is also a need for nondestructive testing of properties. The third type of information to be supplied by nondestructive measurement pertains to STRESS STATES under OPERATIONAL LOADS, i.e. LOAD-INDUCED plus RESIDUAL STRESSES. Residual stresses normally cannot be calculated; they have to be measured nondestructively; well-approved elastomechanical finite element codes are available and used for calculating load-induced stresses; for redundancy and reliability, engineers, however, need procedures and instrumentation for experimental checks.




Advances in Non-destructive Evaluation


Book Description

This book comprises the proceedings of the Conference and Exhibition on Non Destructive Evaluation, (NDE 2019). The contents of the book encompass a vast spectrum from Conventional to Advanced NDE including novel methods, instrumentation, sensors, procedures and data analytics as applied to all industry segments for quality control, periodic maintenance, life estimation, structural integrity and related areas. This book will be a useful reference for students, researchers and practitioners.




Composites Evaluation


Book Description

Composites Evaluation contains the proceedings of the Second International Conference on Testing, Evaluation and Quality Control of Composites-TEQC 87, held at the University of Surrey, UK on September 22-24, 1987. The papers review the physical and chemical properties of composites and the testing and evaluation of these materials. This monograph is comprised of 29 chapters split into nine sections, organized around the themes of nondestructive testing, fatigue testing, impact testing, processing-property relationships, acoustic emission, fracture, mechanical tests, and specialized test equipment and assessment of in-service behavior. The first chapter deals with the nondestructive testing of welds in continuous carbon fiber reinforced thermoplastics, while the second focuses on the use of an automated coin-tap technique for the nondestructive testing of composite structures. The chapters that follow explore hysteresis measurement for obtaining characteristic quantities during dynamic fatigue; real-time recording of impact experiments on composite laminates; the use of statistical methods for determining design data for advanced composite materials; and the strain dependence of elastic modulus in unidirectional composites. The final chapter describes a methodical approach for studying and predicting polymer fiber composite serviceability influenced by cold climate factors. This text will appeal to mechanical and structural engineers as well as materials scientists and technologists.




Computational Inverse Techniques in Nondestructive Evaluation


Book Description

Ill-posedness. Regularization. Stability. Uniqueness. To many engineers, the language of inverse analysis projects a mysterious and frightening image, an image made even more intimidating by the highly mathematical nature of most texts on the subject. But the truth is that given a sound experimental strategy, most inverse engineering problems can b