Ground Penetrating Radar Theory and Applications


Book Description

Ground-penetrating radar (GPR) is a rapidly developing field that has seen tremendous progress over the past 15 years. The development of GPR spans aspects of geophysical science, technology, and a wide range of scientific and engineering applications. It is the breadth of applications that has made GPR such a valuable tool in the geophysical consulting and geotechnical engineering industries, has lead to its rapid development, and inspired new areas of research in academia. The topic of GPR has gone from not even being mentioned in geophysical texts ten years ago to being the focus of hundreds of research papers and special issues of journals dedicated to the topic. The explosion of primary literature devoted to GPR technology, theory and applications, has lead to a strong demand for an up-to-date synthesis and overview of this rapidly developing field. Because there are specifics in the utilization of GPR for different applications, a review of the current state of development of the applications along with the fundamental theory is required. This book will provide sufficient detail to allow both practitioners and newcomers to the area of GPR to use it as a handbook and primary research reference.*Review of GPR theory and applications by leaders in the field*Up-to-date information and references*Effective handbook and primary research reference for both experienced practitioners and newcomers




Nondestructive Testing to Identify Concrete Bridge Deck Deterioration


Book Description

" TRB's second Strategic Highway Research Program (SHRP 2) Report S2-R06A-RR-1: Nondestructive Testing to Identify Concrete Bridge Deck Deterioration identifies nondestructive testing technologies for detecting and characterizing common forms of deterioration in concrete bridge decks.The report also documents the validation of promising technologies, and grades and ranks the technologies based on results of the validations.The main product of this project will be an electronic repository for practitioners, known as the NDToolbox, which will provide information regarding recommended technologies for the detection of a particular deterioration. " -- publisher's description.




Sensor Technologies for Civil Infrastructures, Volume 1


Book Description

Sensors are used for civil infrastructure performance assessment and health monitoring, and have evolved significantly through developments in materials and methodologies. Sensor Technologies for Civil Infrastructure Volume I provides an overview of sensor hardware and its use in data collection. The first chapters provide an introduction to sensing for structural performance assessment and health monitoring, and an overview of commonly used sensors and their data acquisition systems. Further chapters address different types of sensor including piezoelectric transducers, fiber optic sensors, acoustic emission sensors, and electromagnetic sensors, and the use of these sensors for assessing and monitoring civil infrastructures. Developments in technologies applied to civil infrastructure performance assessment are also discussed, including radar technology, micro-electro-mechanical systems (MEMS) and nanotechnology. Sensor Technologies for Civil Infrastructure provides a standard reference for structural and civil engineers, electronics engineers, and academics with an interest in the field. - Describes sensing hardware and data collection, covering a variety of sensors - Examines fiber optic systems, acoustic emission, piezoelectric sensors, electromagnetic sensors, ultrasonic methods, and radar and millimeter wave technology - Covers strain gauges, micro-electro-mechanical systems (MEMS), multifunctional materials and nanotechnology for sensing, and vision-based sensing and lasers




Sensor Technologies for Civil Infrastructures


Book Description

Sensor Technologies for Civil Infrastructure, Volume 1: Sensing Hardware and Data Collection Methods for Performance Assessment, Second Edition, provides an overview of sensor hardware and its use in data collection. The first chapters provide an introduction to sensing for structural performance assessment and health monitoring, and an overview of commonly used sensors and their data acquisition systems. Further chapters address different types of sensor including piezoelectric transducers, fiber optic sensors, acoustic emission sensors, and electromagnetic sensors, and the use of these sensors for assessing and monitoring civil infrastructures. The new edition now includes chapters on machine learning methods and reliability analysis for structural health monitoring. All chapters have been revised to include the latest advances in materials (such as piezoelectric and mechanoluminescent materials), technologies (such as LIDAR), and applications. - Describes sensing hardware and data collection, covering a variety of sensors including LIDAR - Examines fiber optic systems, acoustic emission, piezoelectric sensors, electromagnetic sensors, terahertz technologies, ultrasonic methods, and radar and millimeter wave technology - Covers strain gauges, micro-electro-mechanical systems (MEMS), multifunctional materials and nanotechnology for sensing, and vision-based sensing and lasers - Includes new chapters on machine learning methods and reliability analysis




Structural Sensing, Health Monitoring, and Performance Evaluation


Book Description

Structural health monitoring (SHM) uses one or more in situ sensing systems placed in or around a structure, providing real-time evaluation of its performance and ultimately preventing structural failure. Although most commonly used in civil engineering, such as in roads, bridges, and dams, SHM is now finding applications in other engineering envir




Concrete Solutions


Book Description

Concrete Solutions contains the contributions from some 30 countries to Concrete Solutions, the 6th International Conference on Concrete Repair (Thessaloniki, Greece, 20-23 June 2016). Strengthening and retrofitting are major themes in this volume, with NDT and electrochemical repair following closely, discussing the latest advances and technologies in concrete repair. The book brings together some interesting and challenging theoretical approaches and questions if we really understand and approach such topics as corrosion monitoring correctly. Concrete Solutions is an essential reference work for those working in the concrete repair field, from engineers to architects and from students to clients. The Concrete Solutions Series of international conferences on concrete repair began in 2003 with a conference held in St. Malo, France in association with INSA Rennes. Subsequent conferences have seen the Series partnering with the University of Padua (Italy) in 2009, with TU Dresden (Germany) in 2011 and with Queen’s University Belfast (Northern Ireland) in 2014. In 2016 Thessaloniki (Greece) hosted the conference, partnering with both Aristotle University of Thessaloniki (AUTH) and Democritus University of Thrace (DUTH). The next conference in the series will be held in 2019 in Istanbul.




Non-Destructive Techniques for the Evaluation of Structures and Infrastructure


Book Description

This book provides an overview and up-to-date synthesis of the most commonly used non-destructive technologies for the reverse engineering of built infrastructure facilities. These technologies tackle both the geometric and radiometric characterization of built structures, and thus, validated technologies such as laser scanning, photogrammetry, and




Non-Destructive Evaluation of Reinforced Concrete Structures


Book Description

Engineers have a range of sophisticated techniques at their disposal to evaluate the condition of reinforced concrete structures and non-destructive evaluation plays a key part in assessing and prioritising where money should be spent on repair or replacement of structurally deficient reinforced concrete structures. Non-destructive evaluation of reinforced concrete structures, Volume 2: Non-destructive testing methods reviews the latest non-destructive testing techniques for reinforced concrete structures and how they are used.Part one discusses planning and implementing non-destructive testing of reinforced concrete structures with chapters on non-destructive testing methods for building diagnosis, development of automated NDE systems, structural health monitoring systems and data fusion. Part two reviews individual non-destructive testing techniques including wireless monitoring, electromagnetic and acoustic-elastic waves, laser-induced breakdown spectroscopy, acoustic emission evaluation, magnetic flux leakage, electrical resistivity, capacimetry, measuring the corrosion rate (polarization resistance) and the corrosion potential of reinforced concrete structures, ground penetrating radar, radar tomography, active thermography, nuclear magnetic resonance imaging, stress wave propagation, impact-echo, surface and guided wave techniques and ultrasonics. Part three covers case studies including inspection of concrete retaining walls using ground penetrating radar, acoustic emission and impact echo techniques and using ground penetrating radar to assess an eight-span post-tensioned viaduct.With its distinguished editor and international team of contributors, Non-destructive evaluation of reinforced concrete structures, Volume 2: Non-destructive testing methods is a standard reference for civil and structural engineers as well as those concerned with making decisions regarding the safety of reinforced concrete structures. - Reviews the latest non-destructive testing (NDT) techniques and how they are used in practice - Explores the process of planning a non-destructive program features strategies for the application of NDT testing - A specific section outlines significant advances in individual NDT techniques and features wireless monitoring and electromagnetic and acoustic-elastic wave technology




Risk-Based Strategies for Bridge Maintenance


Book Description

Effective maintenance of bridge structures comprises a broad spectrum of plans for repairs and services implemented to enable bridges to perform their intended function. These include in-depth inspection, fatigue analysis, design of mitigation measures and construction to avert component deterioration. Several incidents of in-service and under construction bridge failures have recently taken place. These dramatic failures emphasize the importance of risk-based inspections and analysis of real-life data to evaluate reliability of bridges. To effectuate benefits of reliability analysis in bridge maintenance, work on theoretical reliability must be equipped with practical analytical tools. Such an approach must underscore risk elements and identify processes to manage risk and avoid unexpected outcomes of failures and service disruption of bridges. The devastating earthquakes of February 6, 2023, in the southern region of Turkey near the northern border of Syria, which claimed tens of thousands of lives, caused enormous structural damage and staggering economic losses. These seismic events brought to focus on the vitality of instilling infrastructure routes that must accommodate emergency management plans to integrate the influx of medical and rescue response teams. The safe operation of bridges along these routes is indispensable for mobilization and deployment of rescue teams, medical personnel, humanitarian assistance, and the supply of food and water. The reliability of access routes and bridges is defined by their ability to adequately function as planned to effectuate emergency management plans, in the event of a similar seismic event, anywhere in the world. Risk-Based Strategies for Bridge Maintenance contains selected papers presented at the 11th New York City Bridge Conference (New York City, USA, 21-22 August 2023), and discusses issues of reliability, risk assessment, management, maintenance, inspection, monitoring, design, preservation, and rehabilitation of bridges. The book is aimed at bridge engineers.




Non-Destructive Testing of Structures


Book Description

The Special Issue “Non-Destructive Testing of Structures” has been proposed to present the recent developments in the field of the diagnostics of structural materials and components in civil and mechanical engineering. The papers highlighted in this editorial concern various aspects of non-invasive diagnostics, including such topics as the condition assessments of civil and mechanical structures and the connections of structural elements, the inspection of cultural heritage monuments, the testing of structural materials, structural health monitoring systems, the integration of non-destructive testing methods, advanced signal processing for the non-destructive testing of structures (NDT), damage detection and damage imaging, as well as modeling and numerical analyses for supporting structural health monitoring (SHM) systems.