Book Description
This volume presents a theoretical framework and control methodology for a class of complex dynamical systems characterised by high state space dimension, multiple inputs and outputs, significant nonlinearity, parametric uncertainty, and unmodeled dynamics. A unique feature of the authors' approach is the combination of rigorous concepts and methods of nonlinear control (invariant and attracting submanifolds, Lyapunov functions, exact linearisation, passification) with approximate decomposition results based on singular perturbations and decentralisation. Some results published previously in the Russian literature and not well known in the West are brought to light. Basic concepts of modern nonlinear control and motivating examples are given. Audience: This book will be useful for researchers, engineers, university lecturers and postgraduate students specialising in the fields of applied mathematics and engineering, such as automatic control, robotics, and control of vibrations.