Nonlinear Control of Engineering Systems


Book Description

This practical yet rigorous book provides a development of nonlinear, Lyapunov-based tools and their use in the solution of control-theoretic problems. Rich in motivating examples and new design techniques, the text balances theoretical foundations and real-world implementation.




Nonlinear Control Systems


Book Description

The purpose of this book is to present a self-contained description of the fun damentals of the theory of nonlinear control systems, with special emphasis on the differential geometric approach. The book is intended as a graduate text as weil as a reference to scientists and engineers involved in the analysis and design of feedback systems. The first version of this book was written in 1983, while I was teach ing at the Department of Systems Science and Mathematics at Washington University in St. Louis. This new edition integrates my subsequent teaching experience gained at the University of Illinois in Urbana-Champaign in 1987, at the Carl-Cranz Gesellschaft in Oberpfaffenhofen in 1987, at the University of California in Berkeley in 1988. In addition to a major rearrangement of the last two Chapters of the first version, this new edition incorporates two additional Chapters at a more elementary level and an exposition of some relevant research findings which have occurred since 1985.




Nonlinear Control Systems and Power System Dynamics


Book Description

Nonlinear Control Systems and Power System Dynamics presents a comprehensive description of nonlinear control of electric power systems using nonlinear control theory, which is developed by the differential geometric approach and nonlinear robust control method. This book explains in detail the concepts, theorems and algorithms in nonlinear control theory, illustrated by step-by-step examples. In addition, all the mathematical formulation involved in deriving the nonlinear control laws of power systems are sufficiently presented. Considerations and cautions involved in applying nonlinear control theory to practical engineering control designs are discussed and special attention is given to the implementation of nonlinear control laws using microprocessors. Nonlinear Control Systems and Power System Dynamics serves as a text for advanced level courses and is an excellent reference for engineers and researchers who are interested in the application of modern nonlinear control theory to practical engineering control designs.




Analysis and Design of Nonlinear Control Systems


Book Description

"Analysis and Design of Nonlinear Control Systems" provides a comprehensive and up to date introduction to nonlinear control systems, including system analysis and major control design techniques. The book is self-contained, providing sufficient mathematical foundations for understanding the contents of each chapter. Scientists and engineers engaged in the field of Nonlinear Control Systems will find it an extremely useful handy reference book. Dr. Daizhan Cheng, a professor at Institute of Systems Science, Chinese Academy of Sciences, has been working on the control of nonlinear systems for over 30 years and is currently a Fellow of IEEE and a Fellow of IFAC, he is also the chairman of Technical Committee on Control Theory, Chinese Association of Automation.




Nonlinear Control Systems II


Book Description

This eagerly awaited follow-up to Nonlinear Control Systems incorporates recent advances in the design of feedback laws, for the purpose of globally stabilizing nonlinear systems via state or output feedback. The author is one of the most prominent researchers in the field.




Nonlinear Industrial Control Systems


Book Description

Nonlinear Industrial Control Systems presents a range of mostly optimisation-based methods for severely nonlinear systems; it discusses feedforward and feedback control and tracking control systems design. The plant models and design algorithms are provided in a MATLAB® toolbox that enable both academic examples and industrial application studies to be repeated and evaluated, taking into account practical application and implementation problems. The text makes nonlinear control theory accessible to readers having only a background in linear systems, and concentrates on real applications of nonlinear control. It covers: different ways of modelling nonlinear systems including state space, polynomial-based, linear parameter varying, state-dependent and hybrid; design techniques for nonlinear optimal control including generalised-minimum-variance, model predictive control, quadratic-Gaussian, factorised and H∞ design methods; design philosophies that are suitable for aerospace, automotive, marine, process-control, energy systems, robotics, servo systems and manufacturing; steps in design procedures that are illustrated in design studies to define cost-functions and cope with problems such as disturbance rejection, uncertainties and integral wind-up; and baseline non-optimal control techniques such as nonlinear Smith predictors, feedback linearization, sliding mode control and nonlinear PID. Nonlinear Industrial Control Systems is valuable to engineers in industry dealing with actual nonlinear systems. It provides students with a comprehensive range of techniques and examples for solving real nonlinear control design problems.




Non-linear Control for Underactuated Mechanical Systems


Book Description

This book deals with the application of modern control theory to some important underactuated mechanical systems, from the inverted pendulum to the helicopter model. It will help readers gain experience in the modelling of mechanical systems and familiarize with new control methods for non-linear systems.




Constructive Nonlinear Control


Book Description

Constructive Nonlinear Control presents a broad repertoire of constructive nonlinear designs not available in other works by widening the class of systems and design tools. Several streams of nonlinear control theory are merged and directed towards a constructive solution of the feedback stabilization problem. Analysis, geometric and asymptotic concepts are assembled as design tools for a wide variety of nonlinear phenomena and structures. Geometry serves as a guide for the construction of design procedures whilst analysis provides the robustness which geometry lacks. New recursive designs remove earlier restrictions on feedback passivation. Recursive Lyapunov designs for feedback, feedforward and interlaced structures result in feedback systems with optimality properties and stability margins. The design-oriented approach will make this work a valuable tool for all those who have an interest in control theory.




Nonlinear and Optimal Control Systems


Book Description

Designed for one-semester introductory senior-or graduate-level course, the authors provide the student with an introduction of analysis techniques used in the design of nonlinear and optimal feedback control systems. There is special emphasis on the fundamental topics of stability, controllability, and optimality, and on the corresponding geometry associated with these topics. Each chapter contains several examples and a variety of exercises.




Advances and Applications in Nonlinear Control Systems


Book Description

The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design procedures on the nonlinear control systems are emphasized using MATLAB software.