Global Behavior of Nonlinear Difference Equations of Higher Order with Applications


Book Description

Nonlinear difference equations of order greater than one are of paramount impor tance in applications where the (n + 1)st generation (or state) of the system depends on the previous k generations (or states). Such equations also appear naturally as discrete analogues and as numerical solutions of differential and delay differential equations which model various diverse phenomena in biology, ecology, physiology, physics, engineering and economics. Our aim in this monograph is to initiate a systematic study of the global behavior of solutions of nonlinear scalar difference equations of order greater than one. Our primary concern is to study the global asymptotic stability of the equilibrium solution. We are also interested in whether the solutions are bounded away from zero and infinity, in the description of the semi cycles of the solutions, and in the existence of periodic solutions. This monograph contains some recent important developments in this area together with some applications to mathematical biology. Our intention is to expose the reader to the frontiers of the subject and to formulate some important open problems that require our immediate attention.




Periodicities in Nonlinear Difference Equations


Book Description

Sharkovsky's Theorem, Li and Yorke's "period three implies chaos" result, and the (3x+1) conjecture are beautiful and deep results that demonstrate the rich periodic character of first-order, nonlinear difference equations. To date, however, we still know surprisingly little about higher-order nonlinear difference equations. During the last




Nonlinear Partial Differential Equations with Applications


Book Description

This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.




Differential-Difference Equations


Book Description

Differential-Difference Equations




Difference Equations, Second Edition


Book Description

In recent years, the study of difference equations has acquired a new significance, due in large part to their use in the formulation and analysis of discrete-time systems, the numerical integration of differential equations by finite-difference schemes, and the study of deterministic chaos. The second edition of Difference Equations: Theory and Applications provides a thorough listing of all major theorems along with proofs. The text treats the case of first-order difference equations in detail, using both analytical and geometrical methods. Both ordinary and partial difference equations are considered, along with a variety of special nonlinear forms for which exact solutions can be determined. Numerous worked examples and problems allow readers to fully understand the material in the text. They also give possible generalization of the theorems and application models. The text's expanded coverage of application helps readers appreciate the benefits of using difference equations in the modeling and analysis of "realistic" problems from a broad range of fields. The second edition presents, analyzes, and discusses a large number of applications from the mathematical, biological, physical, and social sciences. Discussions on perturbation methods and difference equation models of differential equation models of differential equations represent contributions by the author to the research literature. Reference to original literature show how the elementary models of the book can be extended to more realistic situations. Difference Equations, Second Edition gives readers a background in discrete mathematics that many workers in science-oriented industries need as part of their general scientific knowledge. With its minimal mathematical background requirements of general algebra and calculus, this unique volume will be used extensively by students and professional in science and technology, in areas such as applied mathematics, control theory, population science, economics, and electronic circuits, especially discrete signal processing.




Finite Difference Equations


Book Description

Comprehensive study focuses on use of calculus of finite differences as an approximation method for solving troublesome differential equations. Elementary difference operations; interpolation and extrapolation; modes of expansion of the solutions of nonlinear equations, applications of difference equations, difference equations associated with functions of two variables, more. Exercises with answers. 1961 edition.




Nonlinear Difference Equations


Book Description

It is generally acknowledged that deterministic formulations of dy namical phenomena in the social sciences need to be treated differently from similar formulations in the natural sciences. Social science phe nomena typically defy precise measurements or data collection that are comparable in accuracy and detail to those in the natural sciences. Con sequently, a deterministic model is rarely expected to yield a precise description of the actual phenomenon being modelled. Nevertheless, as may be inferred from a study of the models discussed in this book, the qualitative analysis of deterministic models has an important role to play in understanding the fundamental mechanisms behind social sci ence phenomena. The reach of such analysis extends far beyond tech nical clarifications of classical theories that were generally expressed in imprecise literary prose. The inherent lack of precise knowledge in the social sciences is a fun damental trait that must be distinguished from "uncertainty. " For in stance, in mathematically modelling the stock market, uncertainty is a prime and indispensable component of a model. Indeed, in the stock market, the rules are specifically designed to make prediction impossible or at least very difficult. On the other hand, understanding concepts such as the "business cycle" involves economic and social mechanisms that are very different from the rules of the stock market. Here, far from seeking unpredictability, the intention of the modeller is a scientific one, i. e.




Modern Nonlinear Equations


Book Description

Covers major types of classical equations: operator, functional, difference, integro-differential, and more. Suitable for graduate students as well as scientists, technologists, and mathematicians. "A welcome contribution." — Math Reviews. 1964 edition.




Advanced Topics in Difference Equations


Book Description

. The theory of difference equations, the methods used in their solutions and their wide applications have advanced beyond their adolescent stage to occupy a central position in Applicable Analysis. In fact, in the last five years, the proliferation of the subject is witnessed by hundreds of research articles and several monographs, two International Conferences and numerous Special Sessions, and a new Journal as well as several special issues of existing journals, all devoted to the theme of Difference Equations. Now even those experts who believe in the universality of differential equations are discovering the sometimes striking divergence between the continuous and the discrete. There is no doubt that the theory of difference equations will continue to play an important role in mathematics as a whole. In 1992, the first author published a monograph on the subject entitled Difference Equations and Inequalities. This book was an in-depth survey of the field up to the year of publication. Since then, the subject has grown to such an extent that it is now quite impossible for a similar survey, even to cover just the results obtained in the last four years, to be written. In the present monograph, we have collected some of the results which we have obtained in the last few years, as well as some yet unpublished ones.




Nonlinear Symmetries and Nonlinear Equations


Book Description

The study of (nonlinear) dift"erential equations was S. Lie's motivation when he created what is now known as Lie groups and Lie algebras; nevertheless, although Lie group and algebra theory flourished and was applied to a number of dift"erent physical situations -up to the point that a lot, if not most, of current fun damental elementary particles physics is actually (physical interpretation of) group theory -the application of symmetry methods to dift"erential equations remained a sleeping beauty for many, many years. The main reason for this lies probably in a fact that is quite clear to any beginner in the field. Namely, the formidable comple:rity ofthe (algebraic, not numerical!) computations involved in Lie method. I think this does not account completely for this oblivion: in other fields of Physics very hard analytical computations have been worked through; anyway, one easily understands that systems of dOlens of coupled PDEs do not seem very attractive, nor a very practical computational tool.