Nonlinear Dynamics and Shock Structures in Elongated Bose-Einstein Condensates


Book Description

Dilute gas Bose-Einstein condensates are ultracold quantum gases that display many peculiar hydrodynamic properties, such as superfluidity, i.e. dissipation-less flow, a variety of solitonic textures and quantized vortex structures. Small amplitude excitations within a Bose-Einstein condensate are described by the Bogoliubov dispersion, and have been extensively studied in the past. This dissertation extends previous studies by focusing on strong, nonlinear excitations and shock structures generated in elongated Rb-87 Bose-Einstein condensates, elucidating novel dynamics in these quantum systems.This dissertation is separated into two major parts. In the first part, the building and characterization of a new Bose-Einstein condensate apparatus at Washington State University is described. This apparatus has been built to generate ultracold clouds of Rb-87 and, more recently, K-41atoms. A description of the setups for both isotopes are provided. The apparatus reliably produces Bose-Einstein condensates of 7 x 105 Rb-87 atoms every 20 seconds.In the second part of this dissertation, three experiments in a channel geometry are described that have been conducted with the new apparatus. In this part of the dissertation, quantum hydrodynamic properties are probed by using time-dependent optical potentials to generate nonlinear excitations and shock structures in an elongated Bose-Einstein condensate. An emergence of viscous-like shock dynamics, unidirectionality of a non-magnetic spin switch device, and the structure of dispersive shock waves in new types of higher order dispersions are observed. The work described in this dissertation establishes a novel platform for studying strong nonlinear effects in ultracold quantum gases.




Emergent Nonlinear Phenomena in Bose-Einstein Condensates


Book Description

This book, written by experts in the fields of atomic physics and nonlinear science, covers the important developments in a special aspect of Bose-Einstein condensation, namely nonlinear phenomena in condensates. Topics covered include bright, dark, gap and multidimensional solitons; vortices; vortex lattices; optical lattices; multicomponent condensates; mathematical methods/rigorous results; and the beyond-the-mean-field approach.













Vortices in Bose-Einstein Condensates


Book Description

This book provides an up-to-date approach to the diagnosis and management of endocarditis based on a critical analysis of the recent studies. It is the only up-to-date clinically oriented textbook available on this subject. The book is structured in a format that is easy to follow, clinically relevant and evidence based. The author has a special interest in the application of ultrasound in the study of cardiac structure and function.







Universal Themes of Bose-Einstein Condensation


Book Description

Following an explosion of research on Bose–Einstein condensation (BEC) ignited by demonstration of the effect by 2001 Nobel prize winners Cornell, Wieman and Ketterle, this book surveys the field of BEC studies. Written by experts in the field, it focuses on Bose–Einstein condensation as a universal phenomenon, covering topics such as cold atoms, magnetic and optical condensates in solids, liquid helium and field theory. Summarising general theoretical concepts and the research to date - including novel experimental realisations in previously inaccessible systems and their theoretical interpretation - it is an excellent resource for researchers and students in theoretical and experimental physics who wish to learn of the general themes of BEC in different subfields.




Bose-Einstein Condensation of Excitons and Biexcitons


Book Description

Bose-Einstein condensation of excitons is a unique effect in which the electronic states of a solid can self-organize to acquire quantum phase coherence. The phenomenon is closely linked to Bose-Einstein condensation in other systems such as liquid helium and laser-cooled atomic gases. This is the first book to provide a comprehensive survey of this field, covering theoretical aspects as well as recent experimental work. After setting out the relevant basic physics of excitons, the authors discuss exciton-phonon interactions as well as the behaviour of biexcitons. They cover exciton phase transitions and give particular attention to nonlinear optical effects including the optical Stark effect and chaos in excitonic systems. The thermodynamics of equilibrium, quasi-equilibrium, and nonequilibrium systems are examined in detail. The authors interweave theoretical and experimental results throughout the book, and it will be of great interest to graduate students and researchers in semiconductor and superconductor physics, quantum optics, and atomic physics.




Bose-Einstein Condensation


Book Description

Among the most remarkable effects that quantum mechanics adds to the catalog of the thermal properties of matter is "condensation" of an ideal gas of identical particles into a single quantum state, the principle of which was discovered in the theory of statistical mechanics by Bose and Einstein in the 1920s. Bose-Einstein condensation (BEC) is a mechanism for producing a macroscopic quantum system, and is exemplary of the macroscopic quantum phenomena of superconductivity and superfluidity.These 15 papers provide an introduction to current work on BEC.