Nonlinear Effects in Fluids and Solids


Book Description

This volume of scientific papers is dedicated with gratitude and esteem to Ronald Rivlin and is offered as a token of appreciation by former students, col laborators, and friends. Ronald Rivlin's name is synonymous with modem developments in contin uum mechanics. His outstanding pioneering theoretical and experimental re ·search in finite elasticity is a landmark. From his work there has followed a spate of developments in which he played the leading role-the theory of fiber-rein forced materials, the developments of the theory of constitutive equations, the theory of materials with memory, the theory of the fracture of elastomers, the theory of viscoelastic fluids and solids, the development of nonlinear crystal physics, the theory of small deformations superimposed on large, and the effect of large initial strain on wave propagation. It is in Rivlin's work that universal relations were first recognized. Here also are to be found lucid explanations of physical phenomena such as the Poynting effect for elastic rods in torsion. Addi tionally, he and his co-workers predicted the presence of secondary flows for viscoelastic fluids in straight pipes of noncircular cross section under a uniform pressure head. While some others may have displayed a cavalier lack of concern for physical reality and an intoxication with mathematical idiom, Rivlin has al ways been concerned with genuine mathematical and physical content. All of his papers contain interesting and illuminating material-and may be read with profit by anyone interested in continuum mechanics.




Introduction to Wave Propagation in Nonlinear Fluids and Solids


Book Description

Waves occur widely in nature and have innumerable commercial uses. Pressure waves are responsible for the transmission of speech, bow waves created by meteors can virtually ignite the earth's atmosphere, ultrasonic waves are used for medical imaging, and shock waves are used for the synthesis of new materials. This book provides a thorough, modern introduction to the study of linear and nonlinear waves. Beginning with fundamental concepts of motion, the book goes on to discuss linear and nonlinear mechanical waves, thermodynamics, and constitutive models. It covers gases, liquids, and solids as integral parts of the subject. Among the important areas of research and application are impact analysis, shock wave research, explosive detonation, nonlinear acoustics, and hypersonic aerodynamics. Graduate students, as well as professional engineers and applied physicists, will value this clear, comprehensive introduction to the study of wave phenomena.










Wave Propagation in Electromagnetic Media


Book Description

This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical tech niques, and on showing how these methods of mathematical physics can be effective in unifying the physics of wave propagation in electromagnetic media. Chapter 1 presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations, and their appli cations to electromagnetic wave propagation under a variety of conditions.




Computational Fluid and Solid Mechanics


Book Description

The MIT mission - "to bring together Industry and Academia and to nurture the next generation in computational mechanics is of great importance to reach the new level of mathematical modeling and numerical solution and to provide an exciting research environment for the next generation in computational mechanics." Mathematical modeling and numerical solution is today firmly established in science and engineering. Research conducted in almost all branches of scientific investigations and the design of systems in practically all disciplines of engineering can not be pursued effectively without, frequently, intensive analysis based on numerical computations.The world we live in has been classified by the human mind, for descriptive and analysis purposes, to consist of fluids and solids, continua and molecules; and the analyses of fluids and solids at the continuum and molecular scales have traditionally been pursued separately. Fundamentally, however, there are only molecules and particles for any material that interact on the microscopic and macroscopic scales. Therefore, to unify the analysis of physical systems and to reach a deeper understanding of the behavior of nature in scientific investigations, and of the behavior of designs in engineering endeavors, a new level of analysis is necessary. This new level of mathematical modeling and numerical solution does not merely involve the analysis of a single medium but must encompass the solution of multi-physics problems involving fluids, solids, and their interactions, involving multi-scale phenomena from the molecular to the macroscopic scales, and must include uncertainties in the given data and the solution results. Nature does not distinguish between fluids and solids and does not ever repeat itself exactly.This new level of analysis must also include, in engineering, the effective optimization of systems, and the modeling and analysis of complete life spans of engineering products, from design to fabrication, to possibly multiple repairs, to end of service.




Buoyancy Effects in Fluids


Book Description

The phenomena treated in this book all depend on the action of gravity on small density differences in a non-rotating fluid. The author gives a connected account of the various motions which can be driven or influenced by buoyancy forces in a stratified fluid, including internal waves, turbulent shear flows and buoyant convection. This excellent introduction to a rapidly developing field, first published in 1973, can be used as the basis of graduate courses in university departments of meteorology, oceanography and various branches of engineering. This edition is reprinted with corrections, and extra references have been added to allow readers to bring themselves up to date on specific topics. Professor Turner is a physicist with a special interest in laboratory modelling of small-scale geophysical processes. An important feature is the superb illustration of the text with many fine photographs of laboratory experiments and natural phenomena.




Advances in Continuum Mechanics and Thermodynamics of Material Behavior


Book Description

The papers included in this volume were presented at the Symposium on Advances in the Continuum Mechanics and Thermodynamics of Material Behavior, held as part of the 1999 Joint ASME Applied Mechanics and Materials Summer Conference at Virginia Tech on June 27-30, 1999. The Symposium was held in honor of Professor Roger L. Fosdick on his 60th birthday. The papers are written by prominent researchers in the fields of mechanics, thermodynamics, materials modeling, and applied mathematics. They address open questions and present the latest development in these and related areas. This volume is a valuable reference for researchers and graduate students in universities and research laboratories.




High-Intensity Ultrasonics


Book Description

Presenting a comprehensive description of the theory and physics of high-intensity ultrasound, this book also deals with a wide range of problems associated with the industrial applications of ultrasound, mainly in the areas of metallurgy and mineral processing. The book is divided into three sections, and Part I introduces the reader to the theory and physics of high-intensity ultrasound. Part II considers the design of ultrasonic generators, mechanoacoustic radiators and other vibrational systems, as well as the control of acoustic parameters when vibrations are passed into a processed medium. Finally, Part III describes problems associated with various uses of high-intensity ultrasound in metallurgy. The applications of high-intensity ultrasound for metal shaping, thermal and thermochemical treatment, welding, cutting, refining, and surface hardening are also discussed here. This comprehensive monograph will provide an invaluable source of information, which has been largely unavailable in the West until now.




Understanding Acoustics


Book Description

This textbook provides a unified approach to acoustics and vibration suitable for use in advanced undergraduate and first-year graduate courses on vibration and fluids. The book includes thorough treatment of vibration of harmonic oscillators, coupled oscillators, isotropic elasticity, and waves in solids including the use of resonance techniques for determination of elastic moduli. Drawing on 35 years of experience teaching introductory graduate acoustics at the Naval Postgraduate School and Penn State, the author presents a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation that can incorporate attenuation mechanisms and complex media. This view provides a consistent and reliable approach that can be extended with confidence to more complex fluids and future applications. Understanding Acoustics opens with a mathematical introduction that includes graphing and statistical uncertainty, followed by five chapters on vibration and elastic waves that provide important results and highlight modern applications while introducing analytical techniques that are revisited in the study of waves in fluids covered in Part II. A unified approach to waves in fluids (i.e., liquids and gases) is based on a mastery of the hydrodynamic equations. Part III demonstrates extensions of this view to nonlinear acoustics. Engaging and practical, this book is a must-read for graduate students in acoustics and vibration as well as active researchers interested in a novel approach to the material.