Nonlinear Gyrokinetic Simulations of Intrinsic Rotation in Up-down Asymmetric Tokamaks


Book Description

Experiments and theory show that tokamak plasmas with strong toroidal rotation and rotation shear can suppress turbulent energy transport as well as allow violation of the Troyon [beta] limit. However, using external neutral beams to inject toroidal momentum, as is done in many current experiments, would require a prohibitive amount of energy in larger, reactor-sized devices. The most promising alternative to achieve significant mean plasma flow that scales to large devices is intrinsic rotation, the rotation that is observed in the absence of external momentum injection. Intrinsic rotation is observed in current experiments, but is generated by effects that are formally small in [pi]* =- [pi]i / a, the ratio of the ion gyroradius to the tokamak minor radius. These effects are insufficient in anticipated reactors because [pi]*, will be significantly smaller. Recent theoretical work concludes that up-down asymmetry in the poloidal crosssection of tokamaks can drive intrinsic rotation to lowest order in [pi]*, [1, 2]. In this thesis, we extend GS2, a local [delta] f gyrokinetic code that self-consistently calculates momentum transport, to permit up-down asymmetric configurations. MHD analysis shows that ellipticity is most effective at introducing up-down asymmetry throughout the plasma. Accordingly, tokamaks with tilted elliptical poloidal cross-sections were simulated in GS2 to determine nonlinear momentum transport. The results suggest that the current experimentally measured rotation levels can be generated in reactorsized devices using up-down asymmetry. Surprisingly, linear and nonlinear gyrokinetic simulations also suggest that tilted elliptical flux surfaces may naturally suppress turbulent energy transport. Using cyclone base case parameters [3] (except for an elongation K = 2), a 40% reduction in the linear turbulent growth rate was observed by tilting the flux surface [pi]/4 from vertical. However, this reduction of energy transport was not observed when the background temperature gradient was increased by 50%.




Nonlinear Flow Generation By Electrostatic Turbulence In Tokamaks


Book Description

Global gyrokinetic simulations have revealed an important nonlinear flow generation process due to the residual stress produced by electrostatic turbulence of ion temperature gradient (ITG) modes and trapped electron modes (TEM). In collisionless TEM (CTEM) turbulence, nonlinear residual stress generation by both the fluctuation intensity and the intensity gradient in the presence of broken symmetry in the parallel wave number spectrum is identified for the first time. Concerning the origin of the symmetry breaking, turbulence self-generated low frequency zonal flow shear has been identified to be a key, universal mechanism in various turbulence regimes. Simulations reported here also indicate the existence of other mechanisms beyond E × B shear. The ITG turbulence driven "intrinsic" torque associated with residual stress is shown to increase close to linearly with the ion temperature gradient, in qualitative agreement with experimental observations in various devices. In CTEM dominated regimes, a net toroidal rotation is driven in the cocurrent direction by "intrinsic" torque, consistent with the experimental trend of observed intrinsic rotation. The finding of a "flow pinch" in CTEM turbulence may offer an interesting new insight into the underlying dynamics governing the radial penetration of modulated flows in perturbation experiments. Finally, simulations also reveal highly distinct phase space structures between CTEM and ITG turbulence driven momentum, energy and particle fluxes, elucidating the roles of resonant and non-resonant particles.




Theory of Fusion Plasmas


Book Description

The Joint Varenna-Lausanne International Workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favorable for informal and in depth discussions. Invited and contributed papers present state-of-the art researches in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always allows a fruitful mix of experienced researchers and students, to allow for a better understanding of the key theoretical physics models and applications, such as: Theoretical issues related to burning plasmas; Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive; Macroinstabilities; Plasma-Edge Physics and Divertors; Fast particles instabilities.




The Future Of Fusion Energy


Book Description

'The text provides an interesting history of previous and anticipated accomplishments, ending with a chapter on the relationship of fusion power to nuclear weaponry. They conclude on an optimistic note, well worth being understood by the general public.'CHOICEThe gap between the state of fusion energy research and public understanding is vast. In an entertaining and engaging narrative, this popular science book gives readers the basic tools to understand how fusion works, its potential, and contemporary research problems.Written by two young researchers in the field, The Future of Fusion Energy explains how physical laws and the Earth's energy resources motivate the current fusion program — a program that is approaching a critical point. The world's largest science project and biggest ever fusion reactor, ITER, is nearing completion. Its success could trigger a worldwide race to build a power plant, but failure could delay fusion by decades. To these ends, this book details how ITER's results could be used to design an economically competitive power plant as well as some of the many alternative fusion concepts.




Collisional Transport in Magnetized Plasmas


Book Description

A graduate level text treating transport theory, an essential element of theoretical plasma physics.




Controlled Fusion and Plasma Physics


Book Description

Resulting from ongoing, international research into fusion processes, the International Tokamak Experimental Reactor (ITER) is a major step in the quest for a new energy source.The first graduate-level text to cover the details of ITER, Controlled Fusion and Plasma Physics introduces various aspects and issues of recent fusion research activities through the shortest access path. The distinguished author breaks down the topic by first dealing with fusion and then concentrating on the more complex subject of plasma physics. The book begins with the basics of controlled fusion research, followed by discussions on tokamaks, reversed field pinch (RFP), stellarators, and mirrors. The text then explores ideal magnetohydrodynamic (MHD) instabilities, resistive instabilities, neoclassical tearing mode, resistive wall mode, the Boltzmann equation, the Vlasov equation, and Landau damping. After covering dielectric tensors of cold and hot plasmas, the author discusses the physical mechanisms of wave heating and noninductive current drive. The book concludes with an examination of the challenging issues of plasma transport by turbulence, such as magnetic fluctuation and zonal flow. Controlled Fusion and Plasma Physics clearly and thoroughly promotes intuitive understanding of the developments of the principal fusion programs and the relevant fundamental and advanced plasma physics associated with each program.




Software for Exascale Computing - SPPEXA 2016-2019


Book Description

This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest.




Ideal MHD


Book Description

Comprehensive, self-contained, and clearly written, this book describes the macroscopic equilibrium and stability of high temperature plasmas.




The Fairy Tale of Nuclear Fusion


Book Description

This carefully researched book presents facts and arguments showing, beyond a doubt, that nuclear fusion power will not be technically feasible in time to satisfy the world's urgent need for climate-neutral energy. The author describes the 70-year history of nuclear fusion; the vain attempts to construct an energy-generating nuclear fusion power reactor, and shows that even in the most optimistic scenario nuclear fusion, in spite of the claims of its proponents, will not be able to make a sizable contribution to the energy mix in this century, whatever the outcome of ITER. This implies that fusion power will not be a factor in combating climate change, and that the race to save the climate with carbon-free energy will have been won or lost long before the first nuclear fusion power station comes on line. Aimed at the general public as well as those whose decisions directly affect energy policy, this book will be a valuable resource for informing future debates.




Driven Rotation, Self-Generated Flow, and Momentum Transport in Tokamak Plasmas


Book Description

This book provides a comprehensive look at the state of the art of externally driven and self-generated rotation as well as momentum transport in tokamak plasmas. In addition to recent developments, the book includes a review of rotation measurement techniques, measurements of directly and indirectly driven rotation, momentum sinks, self-generated flow, and momentum transport. These results are presented alongside summaries of prevailing theory and are compared to predictions, bringing together both experimental and theoretical perspectives for a broad look at the field. Both researchers and graduate students in the field of plasma physics will find this book to be a useful reference. Although there is an emphasis on tokamaks, a number of the concepts are also relevant to other configurations.