Magnetism of Surfaces, Interfaces, and Nanoscale Materials


Book Description

In the past 30 years, magnetic research has been dominated by the question of how surfaces and interfaces influence the magnetic and transport properties of nanostructures, thin films and multilayers. The research has been particularly important in the magnetic recording industry where the giant magnetoresistance effect led to a new generation of storage devices including hand-held memories such as those found in the ipod. More recently, transfer of spin angular momentum across interfaces has opened a new field for high frequency applications.This book gives a comprehensive view of research at the forefront of these fields. The frontier is expanding through dynamic exchange between theory and experiment. Contributions have been chosen to reflect this, giving the reader a unified overview of the topic. - Addresses both theory and experiment that are vital for gaining an essential understanding of topics at the interface between magnetism and materials science - Chapters written by experts provide great insights into complex material - Discusses fundamental background material and state-of-the-art applications, serving as an indispensable guide for students and professionals at all levels of expertise - Stresses interdisciplinary aspects of the field, including physics, chemistry, nanocharacterization, and materials science - Combines basic materials with applications, thus widening the scope of the book and its readership




Nonlinear Magnetization Dynamics in Nanosystems


Book Description

As data transfer rates increase within the magnetic recording industry, improvements in device performance and reliability crucially depend on the thorough understanding of nonlinear magnetization dynamics at a sub-nanoscale level. This book offers a modern, stimulating approach to the subject of nonlinear magnetization dynamics by discussing important aspects such as the Landau-Lifshitz-Gilbert (LLG) equation, analytical solutions, and the connection between the general topological and structural aspects of dynamics. An advanced reference for the study and understanding of nonlinear magnetization dynamics, it addresses situations such as the understanding of spin dynamics in short time scales and device performance and reliability in magnetic recording. Topics covered include nonlinear magnetization dynamics and the Landau-Lifshitz-Gilbert equation, nonlinear dynamical systems, spin waves, ferromagnetic resonance and pulsed magnetization switching. The book explains how to derive exact analytical solutions for the complete nonlinear problem and emphasises the connection between the general topological and structural aspects of nonlinear magnetization dynamics and the discretization schemes better suited to its numerical study. It is an exceptional research tool providing an advanced understanding of the study of magnetization dynamics in situations of fundamental and technological interest.




High Frequency Processes in Magnetic Materials


Book Description

This review volume deals with recent advances in topics of importance to scientists and engineers involved in research and device development utilizing magnetic oxides and multilayers. The subject matter covered includes linear and nonlinear high frequency magnetic excitations and interaction between magnons and photons. In particular, this book contains detailed discussion on the detection of magnons by Brillouin light scattering and photothermal spectroscopy, interaction between spin waves and optical guided modes, microwave solitons, and spin wave instabilities. Recent advances in traditional characterization techniques such as ferromagnetic and antiferromagnetic resonance, and in studies on magnetic order in noncrystalline oxides are also presented.







Linear And Nonlinear Spin Waves In Magnetic Films And Superlattices


Book Description

In the past few years, there has been a rapidly growing interest in the properties of spin waves (or magnons) in ordered magnetic materials. These are the low-lying excitations that characterize the dynamical behavior of the magnetization variables in ferromagnets, ferrimagnets and antiferromagnets, particularly at low temperatures. Many of the recent developments concerning spin waves have been directed towards understanding their behavior in limited magnetic samples. At the same time, there have been dramatic advances in the experimental techniques, both for preparing high-quality magnetic samples in the form of thin films and superlattices and for the study of the spin-wave excitations themselves. Magnetic thin films have long been of technological as well as scientific interest and an understanding of both the linear and nonlinear aspects of their magnetic behavior is important.




Magnetization Oscillations and Waves


Book Description

Written by two well-known researchers in the field, this useful reference takes an applied approach to high frequency processes including oscillations and waves in ferromagnets, antiferromagnets, and ferrimagnets. Problems evaluated include ferromagnetic and antiferromagnetic resonances, spin waves, nonlinear processes, and high frequency manifestations of interactions between the magnetic system and other systems of magnetically ordered substances as elastic waves and charge carriers. Unlike previous monographs on this subject, which are highly theoretical and written for very advanced readers, this book requires only an average college background in mathematics and experimental physics. It will be a valuable addition to the library of engineers and scientists in research and development for communications applications, and scientists interested in nonlinear magnetic phenomena. It also serves as an excellent introduction to the topic for newcomers in the field. Magnetization Oscillations and Waves not only presents results but also shows readers how to obtain them; most formulas are derived with so many details that readers can reproduce them. The book includes many summaries and tables and detailed references to significant work in the area by European researchers.




Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures


Book Description

This book provides a comprehensive overview of the latest developments in the field of spin dynamics and magnetic damping. It discusses the various ways to tune damping, specifically, dynamic and static control in a ferromagnetic layer/heavy metal layer. In addition, it addresses all optical detection techniques for the investigation of modulation of damping, for example, the time-resolved magneto-optical Kerr effect technique.




Nonlinear Dynamics and Chaos


Book Description

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.




Handbook of Nanostructured Materials and Nanotechnology, Five-Volume Set


Book Description

Nanostructured materials is one of the hottest and fastest growing areas in today's materials science field, along with the related field of solid state physics. Nanostructured materials and their based technologies have opened up exciting new possibilites for future applications in a number of areas including aerospace, automotive, x-ray technology, batteries, sensors, color imaging, printing, computer chips, medical implants, pharmacy, and cosmetics. The ability to change properties on the atomic level promises a revolution in many realms of science and technology. Thus, this book details the high level of activity and significant findings are available for those involved in research and development in the field. It also covers industrial findings and corporate support. This five-volume set summarizes fundamentals of nano-science in a comprehensive way. The contributors enlisted by the editor are at elite institutions worldwide. Key Features * Provides comprehensive coverage of the dominant technology of the 21st century * Written by 127 authors from 16 countries, making this truly international * First and only reference to cover all aspects of nanostructured materials and nanotechnology




Nonlinear Phenomena and Chaos in Magnetic Materials


Book Description

In this book, some of the principal investigators of the phenomena have reviewed their successes. The contributions include an overview of the field by H Suhl, followed by a detailed review of the high-power response of magnetic materials. Following that chapter, a number of authors review the phenomena for a variety of magnetic materials and pumping configurations.In the final chapter, evidence of another nonlinear effect is reviewed. Using a pulsed driving field, it is possible to excite a travelling spin wave. The nonlinear contributions will give rise to a ?bunching? effect which compensates for the dispersive effects to produce a shape-preserving traveling wave pulse known as solitons.Ordered magnetic materials have provided a rich source for the investigation of nonlinear phenomena. These investigations have contributed much to our knowledge of the behavior of chaotic systems, as well as to a better understanding of the high-power response of the magnetic materials themselves.