Nonlinear Optics: a Student's Perspective


Book Description

*** Note to instructors. This book is available free of charge as an eBook on Perusall, the peer discussion forum. *** This unique textbook on nonlinear optics is written by award-winning teacher and researcher, Regents Professor Mark G. Kuzyk of Washington State University. It is ideal for a class or as a reference, and can be used for self study. Exercises are provided as material is introduced to reinforce concepts. The book's approach mirrors the author's philosophy that a firm grounding in the fundamentals will allow the student to tackle any topic. As such, many topics are left out while others are covered in depth to develop the intuition. Physics is meant to be savored, so this book should be consumed slowly with attention to the deeper meaning of the topics presented. The rest will naturally fall into place. Material not normally discussed in standard textbooks that is covered here includes the introduction of second quantization and how it can be applied to Feynman-like diagrams for calculating nonlinear susceptibilities. Dirac notation is introduced to facilitate the development of the theory with finesse. This approach provides a pictorial representation of light-matter interactions that leads to a more intuitive understanding of phenomena such as difference frequency generation, cascading and stimulated emission. An introduction to Python programming and solving simple numerical problems is briefly presented to get the student up to speed. In addition to unique problem sets that are not typically assigned in a course on nonlinear optics, a series of numerical problems are provided to both hone coding skills (the student can code in any language) and shed light on problems that have no analytical solution. Other unique topics covered are magnetic susceptibilities, nonlinear optics at negative absolute temperature, epsilon near zero materials, surface plasmons in various spatial dimensions, aperiodic nonlinear gratings to control the effective nonlinearity, nonlinear optics of single molecules, self-consistent methods for treating cascading as a local field and an in-depth derivation of optical multi-stability. This book is a total overhaul of "Lecture Notes in Nonlinear Optics: a student's perspective." Previous material is extensively augmented and rewritten for clarity and lots of new material has been added. While this newer book tries to take a student's perspective, it does not have the same raw narrative as the previous volume. Being so different in approach and content, it should be considered a new book rather than an updated edition of the previous one. If the more polished approach is not your thing, then go for the older book, which will remain available indefinitely.




Fundamentals of Nonlinear Optics


Book Description

Fundamentals of Nonlinear Optics encompasses a broad spectrum of nonlinear phenomena from second-harmonic generation to soliton formation. The wide use of nonlinear optical phenomena in laboratories and commercial devices requires familiarity with the underlying physics as well as practical device considerations. This text adopts a combined approach to analyze the complimentary aspects of nonlinear optics, enabling a fundamental understanding of both a given effect and practical device applications. After a review chapter on linear phenomena important to nonlinear optics, the book tackles nonlinear phenomena with a look at the technologically important processes of second-harmonic generation, sum-frequency and difference-frequency generation, and the electro-optic effect. The author covers these processes in considerable detail at both theoretical and practical levels as the formalisms developed for these effects carry to subsequent topics, such as four-wave mixing, self-phase modulation, Raman scattering, Brillouin scattering, and soliton formation. Consistently connecting theory, process, effects, and applications, this introductory text encourages students to master key concepts and to solve nonlinear optics problems—preparing them for more advanced study. Along with extensive problems at the end of each chapter, it presents general algorithms accessible to any scientific graphical and programming package. Watch the author speak about the book.




Field Guide to Nonlinear Optics


Book Description

This Field Guide is designed for those looking for a condensed and concise source of key concepts, equations, and techniques for nonlinear optics. Examples throughout this Field Guide illustrate fundamental concepts while demonstrating the application of key equations. Topics covered include technologically important effects, recent developments in nonlinear optics, and linear optical properties central to nonlinear phenomena, with a focus on real-world applicability in the field of nonlinear optics.




Quantum Nonlinear Optics


Book Description

This graduate-level textbook gives an introductory overview of the fundamentals of quantum nonlinear optics. It deals with the organization of radiation field, interaction between electronic system and radiation field, statistics of light, and mutual manipulation of light and matter. It also covers laser oscillation, dynamics of light, nonlinear optical response, and nonlinear spectroscopy, as well as ultrashort and ultrastrong laser pulse. In addition, latest results of the frontier of this science are presented. Problems and solutions help the reader to master and review the material.




Nonlinear Optics


Book Description

Intended for readers with a background in classical electromagnetic theory, this book develops the basic principles that underlie nonlinear optical phenomena in matter. It begins with a discussion of linear wave propagation in dispersive media, moves into weak nonlinearities which can be discussed in a pertuberative manner, then it examines strong nonlinear effects (solitons, chaos). The emphasis is on the macroscopic description on nonlinear phenomena, within a semiclassical framework. Two new chapters cover surface optics and magneto-optic phenomena. The book is aimed at the student or researcher who is not a specialist in optics but needs an introduction to the principal concepts.




Nonlinear Fiber Optics


Book Description

Since the 3rd edition appeared, a fast evolution of the field has occurred. The fourth edition of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers. The contents include such important topics as self- and cross-phase modulation, stimulated Raman and Brillouin scattering, four-wave mixing, modulation instability, and optical solitons. Many new figures have been added to help illustrate the concepts discussed in the book. New to this edition are chapters on highly nonlinear fibers and and the novel nonlinear effects that have been observed in these fibers since 2000. Such a chapter should be of interest to people in the field of new wavelengths generation, which has potential application in medical diagnosis and treatments, spectroscopy, new wavelength lasers and light sources, etc. Continues to be industry bestseller providing unique source of comprehensive coverage on the subject of nonlinear fiber optics Fourth Edition is a completely up-to-date treatment of the nonlinear phenomena occurring inside optical fibers Includes 2 NEW CHAPTERS on the properties of highly nonlinear fibers and their novel nonlinear effects




Nonlinear Optics


Book Description

Nonlinear Optics probes in great depth quadratic and cubic nonlinearities, photorefractive nonlinear optics, the nonlinear optical properties of nematic liquid crystals, and photonic bandgap structures. This reference places core physical principles and theoretical concepts in dialogue with contemporary applications and research and presents




Principles of Nonlinear Optical Spectroscopy


Book Description

This textbook presents a systematic and unifying viewpoint for a wide class of nonlinear spectroscopic techniques in time domain and frequency domain. It is directed towards active researchers in physics, optics, chemistry, and materials science, as well as graduate students who enter this complex and rapidly developing field. Nonlinear optical interactions of laser fields with matter provide powerful spectroscopic tools for the understanding of microscopic interactions and dynamic processes. One of the major obstacles facing researchers in this field, however, is the flood of experimental techniques and terminologies, which create a serious language barrier. The general microscopic correlation function approach to the nonlinear optical response developed in this book is essential for understanding the relationships among different techniques and a comparison of their information content, the design of new measurements, and for a systematic comparison of the optical response of different systems such as dyes in solutions, atoms and molecules in the gas phase, liquids, molecular aggregates and superlatives, and semiconductor nanostructures. The approach is based on formulating the nonlinear response by representing the state of matter by the density matrix and following its evolution on Liouville space. Current active research areas such as femtosecond time-domain techniques, semi-classical and wave-packet dynamics, pulse shaping, pulse locking, exciton confinement, and the interplay of electronic, nuclear and field coherence are emphasized. The material has been developed from the author's highly successful interdisciplinary course at the University of Rochester attended by science and engineering graduate students.




Nonlinear Photonics


Book Description

A robust introduction to real-world nonlinear photonics for students of electrical engineering.




The Quantum Theory of Nonlinear Optics


Book Description

This self-contained treatment of field quantization requires no prior knowledge of nonlinear optics. Supplemented by end-of-chapter exercises and detailed examples of calculation techniques in different systems, it is a valuable resource for graduate students and researchers in nonlinear optics, condensed matter physics, quantum information and atomic physics.