Optics and Nonlinear Optics of Liquid Crystals


Book Description

This is a monograph/text devoted to a detailed treatment of the optical, electro-optical and nonlinear optical properties of all the mesophases of liquid crystals and related processes, phenomena and application principles. Quantitative data on material and optical parameters spanning the ultraviolet, visible, infrared as well as the microwave regimes are presented along with detailed theoretical treatments of basic liquid crystal physics, material properties and nonlinear optics.Starting with a discussion on the basic building blocks of liquid crystalline molecules, the authors proceed to present in a pedagogical manner current theories, experiments, and applications of these unique and important optical properties of liquid crystals. Numerous tables of hard-to-find liquid crystalline parameters, a self-contained chapter on general nonlinear optics, and comprehensive literature review are also included.







Nonlinear Optics of Liquid and Photorefractive Crystals II


Book Description

A study of nonlinear optics of liquid and photorefractive crystals. It examines areas such as doped chiral liquid crystal systems as photolimiters, space-charge waves in photorefractive BSO crystals, and feedback-induced phase modulation and periodic states.







Nonlinear Optics


Book Description

Nonlinear Optics probes in great depth quadratic and cubic nonlinearities, photorefractive nonlinear optics, the nonlinear optical properties of nematic liquid crystals, and photonic bandgap structures. This reference places core physical principles and theoretical concepts in dialogue with contemporary applications and research and presents




Crystal Optics: Properties and Applications


Book Description

Reviews the properties and applications of photo-elastic, acousto-optic, magneto-optic, electro-optic, and photorefractive materials This book deals with the basic physical properties and applications of photo-elastic, acousto-optic, magneto-optic, electro-optic, and photorefractive materials. It also provides up-to-date information on the design and applications of various optoelectronic devices based on these materials. The first chapter of Crystal Optics: Properties and Applications covers the basic concepts of crystal optics, such as index ellipsoid or optical indicatrix, crystal symmetry, wave surface, birefringence, and the polarization of light. Chapter 2 reviews the physical phenomena of crystal optics in isotropic and crystalline materials. It describes in detail research information on modern photoelastic materials and reviews the up-to-date photoelastic device applications. Chapter 3 develops the underlying theory of acousto-optics from first principles, formulating results suitable for subsequent calculations and design. The fourth chapter describes the basic principles of magneto-optic effects and mode of interaction with magnetic materials. The fifth chapter provides an understanding of the physical phenomenon of the linear and quadratic electro-optic effects in isotropic and crystalline materials. The last chapter collects many of the most important recent developments in photorefractive effects and materials, and pays special attention to recent scientific findings and advances on photorefractive materials and devices. -Features up to date information on the design and applications of various optoelectronic devices -Looks at the basic concepts of crystal optics, including the polarization of light, effects of reflection and transmission of polarization and light polarizing devices, and more -Pays special attention to design procedures for the entire range of acousto-optic devices and various applications of these devices -Provides research information on modern magneto-optic materials and reviews the up-to-date magneto-optic device applications?up to terahertz (THz) regime Crystal Optics: Properties and Applications is an excellent book for the scientific community working in the field, including researchers, lecturers, and advanced students.




Landmark Papers on Photorefractive Nonlinear Optics


Book Description

This book, intended for students, researchers and engineers, is a collection of classic papers on photorefractive nonlinear optics. Included are landmark papers on fundamental photorefractive phenomena, two-wave mixing, four-wave mixing, phase conjugators and resonators, material growth and physics, and applications in image processing, optical storage and optical computing.




Tenth International Conference on Nonlinear Optics of Liquid and Photorefractive Crystals


Book Description

Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.




Nonlinear Optical Materials


Book Description

Mathematical methods play a significant role in the rapidly growing field of nonlinear optical materials. This volume discusses a number of successful or promising contributions. The overall theme of this volume is twofold: (1) the challenges faced in computing and optimizing nonlinear optical material properties; and (2) the exploitation of these properties in important areas of application. These include the design of optical amplifiers and lasers, as well as novel optical switches. Research topics in this volume include how to exploit the magnetooptic effect, how to work with the nonlinear optical response of materials, how to predict laser-induced breakdown in efficient optical devices, and how to handle electron cloud distortion in femtosecond processes.




Polarized Light in Liquid Crystals and Polymers


Book Description

Polarized Light in Liquid Crystals and Polymers deals with the linear optics of birefringent materials, such as liquid crystals and polymers, and surveys light propagation in such media with special attention to applications. It is unique in treating light propagation in micro- and nanostructured birefringent optical elements, such as lenses and gratings composed of birefringent materials, as well as the spatial varying anisotropic structures often found in miniaturized liquid crystal devices.