Nonlinear Optimization of Vehicle Safety Structures


Book Description

Nonlinear Optimization of Vehicle Safety Structures: Modeling of Structures Subjected to Large Deformations provides a cutting-edge overview of the latest optimization methods for vehicle structural design. The book focuses on large deformation structural optimization algorithms and applications, covering the basic principles of modern day topology optimization and comparing the benefits and flaws of different algorithms in use. The complications of non-linear optimization are highlighted, along with the shortcomings of recently proposed algorithms. Using industry relevant case studies, users will how optimization software can be used to address challenging vehicle safety structure problems and how to explore the limitations of the approaches given. The authors draw on research work with the likes of MIRA, Jaguar Land Rover and Tata Motors European Technology Centre as part of multi-million pound European funded research projects, emphasizing the industry applications of recent advances. The book is intended for crash engineers, restraints system engineers and vehicle dynamics engineers, as well as other mechanical, automotive and aerospace engineers, researchers and students with a structural focus. - Focuses on non-linear, large deformation structural optimization problems relating to vehicle safety - Discusses the limitations of different algorithms in use and offers guidance on best practice approaches through the use of relevant case studies - Author's present research from the cutting-edge of the industry, including research from leading European automotive companies and organizations - Uses industry relevant case studies, allowing users to understand how optimization software can be used to address challenging vehicle safety structure problems and how to explore the limitations of the approaches given




Autonomous Vehicle


Book Description

Autonomous vehicles, despite their relatively short history, have already found practical application in many areas of human activity. Such vehicles are usually replacing people in performing tasks that require long operating time and are held in inaccessible or hazardous environments. Nevertheless, autonomous robotics is probably the area that is being developed the most because of the great demand for such devices in different areas of our lives. This book is a collection of experiences shared by scientists from different parts of the world doing researches and daily exploiting autonomous systems. Giving this book in the hands of the reader, we hope that it will be a treasure trove of knowledge and inspiration for further research in the field of autonomous vehicles.




Gas Allocation Optimization Methods in Artificial Gas Lift


Book Description

This Brief offers a comprehensive study covering the different aspects of gas allocation optimization in petroleum engineering. It contains different methods of defining the fitness function, dealing with constraints and selecting the optimizer; in each chapter a detailed literature review is included which covers older and important studies as well as recent publications. This book will be of use for production engineers and students interested in gas lift optimization.




Security and Privacy in New Computing Environments


Book Description

This book constitutes the refereed proceedings of the 2nd EAI International Conference on Security and Privacy in New Computing Environments, SPNCE 2019, held in Tianjin, China, in April 2019. The 62 full papers were selected from 112 submissions and are grouped into topics on privacy and security analysis, Internet of Things and cloud computing, system building, scheme, model and application for data, mechanism and method in new computing.




Artificial Cognitive Architecture with Self-Learning and Self-Optimization Capabilities


Book Description

This book introduces three key issues: (i) development of a gradient-free method to enable multi-objective self-optimization; (ii) development of a reinforcement learning strategy to carry out self-learning and finally, (iii) experimental evaluation and validation in two micromachining processes (i.e., micro-milling and micro-drilling). The computational architecture (modular, network and reconfigurable for real-time monitoring and control) takes into account the analysis of different types of sensors, processing strategies and methodologies for extracting behavior patterns from representative process’ signals. The reconfiguration capability and portability of this architecture are supported by two major levels: the cognitive level (core) and the executive level (direct data exchange with the process). At the same time, the architecture includes different operating modes that interact with the process to be monitored and/or controlled. The cognitive level includes three fundamental modes such as modeling, optimization and learning, which are necessary for decision-making (in the form of control signals) and for the real-time experimental characterization of complex processes. In the specific case of the micromachining processes, a series of models based on linear regression, nonlinear regression and artificial intelligence techniques were obtained. On the other hand, the executive level has a constant interaction with the process to be monitored and/or controlled. This level receives the configuration and parameterization from the cognitive level to perform the desired monitoring and control tasks.




Innovative Structural Materials


Book Description

This book is devoted to innovative structural materials for multi-materialization. It is based on results of a 10-year national project, The Innovative Structural Materials Research and Development Project, which was carried out in Japan, aimed at reducing the weight of materials (steel, aluminum alloys, magnesium alloys, titanium alloys, thermoplastic CFRP, carbon fiber) and components used in transportation equipment such as automobiles. In this project, collaborative research in a total of nine fields including materials, joining, and structural designing was also carried out in order to realize multi-materials. This book is compiled with the aim of handing down the technical and academic results obtained through these research and development activities to the next generation of researchers and students. This book enables material engineers and researchers in the field of materials related to transportation equipment, graduate students in various technical fields, and engineers and researchers belonging to material users to grasp the full picture of material development and multi-materials technologies. For the understanding of engineers and researchers who will work on multi-materials, this book explains the current state of technology and science in each field and explains the innovative results obtained by research in each field.










Structural Crashworthiness


Book Description