Nonlinear Partial Differential Equations for Future Applications


Book Description

This volume features selected, original, and peer-reviewed papers on topics from a series of workshops on Nonlinear Partial Differential Equations for Future Applications that were held in 2017 at Tohoku University in Japan. The contributions address an abstract maximal regularity with applications to parabolic equations, stability, and bifurcation for viscous compressible Navier–Stokes equations, new estimates for a compressible Gross–Pitaevskii–Navier–Stokes system, singular limits for the Keller–Segel system in critical spaces, the dynamic programming principle for stochastic optimal control, two kinds of regularity machineries for elliptic obstacle problems, and new insight on topology of nodal sets of high-energy eigenfunctions of the Laplacian. This book aims to exhibit various theories and methods that appear in the study of nonlinear partial differential equations.




Nonlinear Partial Differential Equations


Book Description

The topic of the 2010 Abel Symposium, hosted at the Norwegian Academy of Science and Letters, Oslo, was Nonlinear Partial Differential Equations, the study of which is of fundamental importance in mathematics and in almost all of natural sciences, economics, and engineering. This area of mathematics is currently in the midst of an unprecedented development worldwide. Differential equations are used to model phenomena of increasing complexity, and in areas that have traditionally been outside the realm of mathematics. New analytical tools and numerical methods are dramatically improving our understanding of nonlinear models. Nonlinearity gives rise to novel effects reflected in the appearance of shock waves, turbulence, material defects, etc., and offers challenging mathematical problems. On the other hand, new mathematical developments provide new insight in many applications. These proceedings present a selection of the latest exciting results by world leading researchers.




Nonlinear Partial Differential Equations with Applications


Book Description

This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.




Nonlinear and Robust Control of PDE Systems


Book Description

The interest in control of nonlinear partial differential equation (PDE) sys tems has been triggered by the need to achieve tight distributed control of transport-reaction processes that exhibit highly nonlinear behavior and strong spatial variations. Drawing from recent advances in dynamics of PDE systems and nonlinear control theory, control of nonlinear PDEs has evolved into a very active research area of systems and control. This book the first of its kind- presents general methods for the synthesis of nonlinear and robust feedback controllers for broad classes of nonlinear PDE sys tems and illustrates their applications to transport-reaction processes of industrial interest. Specifically, our attention focuses on quasi-linear hyperbolic and parabolic PDE systems for which the manipulated inputs and measured and controlled outputs are distributed in space and bounded. We use geometric and Lyapunov-based control techniques to synthesize nonlinear and robust controllers that use a finite number of measurement sensors and control actuators to achieve stabilization of the closed-loop system, output track ing, and attenuation of the effect of model uncertainty. The controllers are successfully applied to numerous convection-reaction and diffusion-reaction processes, including a rapid thermal chemical vapor deposition reactor and a Czochralski crystal growth process. The book includes comparisons of the proposed nonlinear and robust control methods with other approaches and discussions of practical implementation issues.




Physical Mathematics and Nonlinear Partial Differential Equations


Book Description

This volume consists of the proceedings of the conference on Physical Mathematics and Nonlinear Partial Differential Equations held at West Virginia University in Morgantown. It describes some work dealing with weak limits of solutions to nonlinear systems of partial differential equations.




Differential Equations


Book Description

Presents recent developments in the areas of differential equations, dynamical systems, and control of finke and infinite dimensional systems. Focuses on current trends in differential equations and dynamical system research-from Darameterdependence of solutions to robui control laws for inflnite dimensional systems.




Rings, Extensions, and Cohomology


Book Description

"Presenting the proceedings of a conference held recently at Northwestern University, Evanston, Illinois, on the occasion of the retirement of noted mathematician Daniel Zelinsky, this novel reference provides up-to-date coverage of topics in commutative and noncommutative ring extensions, especially those involving issues of separability, Galois theory, and cohomology."




Advances in Hopf Algebras


Book Description

"This remarkable reference covers topics such as quantum groups, Hopf Galois theory, actions and coactions of Hopf algebras, smash and crossed products, and the structure of cosemisimple Hopf algebras. "




Einstein Metrics and Yang-Mills Connections


Book Description

This volume contains papers presented at the 27th Taniguchi International Symposium, held in Sanda, Japan - focusing on the study of moduli spaces of various geometric objects such as Einstein metrics, conformal structures, and Yang-Mills connections from algebraic and analytic points of view.;Written by over 15 authorities from around the world, Einstein Metrics and Yang-Mills Connections...: discusses current topics in Kaehler geometry, including Kaehler-Einstein metrics, Hermitian-Einstein connections and a new Kaehler version of Kawamata-Viehweg's vanishing theorem; explores algebraic geometric treatments of holomorphic vector bundles on curves and surfaces; addresses nonlinear problems related to Mong-Ampere and Yamabe-type equations as well as nonlinear equations in mathematical physics; and covers interdisciplinary topics such as twistor theory, magnetic monopoles, KP-equations, Einstein and Gibbons-Hawking metrics, and supercommutative algebras of superdifferential operators.;Providing a wide array of original research articles not published elsewhere Einstein Metrics and Yang-Mills Connections is for research mathematicians, including topologists and differential and algebraic geometers, theoretical physicists, and graudate-level students in these disciplines.




Commutative Ring Theory


Book Description

" Exploring commutative algebra's connections with and applications to topological algebra and algebraic geometry, Commutative Ring Theory covers the spectra of rings chain conditions, dimension theory, and Jaffard rings fiber products group rings, semigroup rings, and graded rings class groups linear groups integer-valued polynomials rings of finite fractions big Cohen-Macaulay modules and much more!"