Nonlinear Phenomena in Atmospheric and Oceanic Sciences


Book Description

This IMA Volume in Mathematics and its Applications NONLINEAR PHENOMENA IN ATMOSPHERIC AND OCEANIC SCIENCES is based on the proceedings of a workshop which was an integral part of the 1989-90 IMA program on "Dynamical Systems and their Applications". The aim of this workshop was to promote cross-fertilization of ideas between investigators who are using nonlinear dynamical systems and numerical simulations to study the earth's atmosphere and oceans. We thank George F. Carnevale, Shui-Nee Chow, Martin Golubitsky, Richard McGehee, Raymond Pierrehumbert and George R. Sell for organizing the meeting. We especially thank George F. Carnevale and Raymond Pierrehumbert for editing the proceedings. We also take this opportunity to thank those agencies whose financial support made the workshop possible: the Army Research Office, the Minnesota Supercom puter Institute, the National Science Foundation, and the Office of Naval Research. A vner Friedman Willard Miller, Jr. PREFACE When we took on this project, we did not realize we were organizing a workshop on two-dimensional fluid dynamics. The participants who were invited had been working on a broad range of mathematically challenging problems related to atmo spheric and oceanic phenomena, and they were given carte blanche to talk about their current interests. With few exceptions, the favored subject involved one or another aspect of fluid flow in two dimensions.




Nonlinear Phenomena in Atmospheric and Oceanic Sciences


Book Description

This IMA Volume in Mathematics and its Applications NONLINEAR PHENOMENA IN ATMOSPHERIC AND OCEANIC SCIENCES is based on the proceedings of a workshop which was an integral part of the 1989-90 IMA program on "Dynamical Systems and their Applications". The aim of this workshop was to promote cross-fertilization of ideas between investigators who are using nonlinear dynamical systems and numerical simulations to study the earth's atmosphere and oceans. We thank George F. Carnevale, Shui-Nee Chow, Martin Golubitsky, Richard McGehee, Raymond Pierrehumbert and George R. Sell for organizing the meeting. We especially thank George F. Carnevale and Raymond Pierrehumbert for editing the proceedings. We also take this opportunity to thank those agencies whose financial support made the workshop possible: the Army Research Office, the Minnesota Supercom puter Institute, the National Science Foundation, and the Office of Naval Research. A vner Friedman Willard Miller, Jr. PREFACE When we took on this project, we did not realize we were organizing a workshop on two-dimensional fluid dynamics. The participants who were invited had been working on a broad range of mathematically challenging problems related to atmo spheric and oceanic phenomena, and they were given carte blanche to talk about their current interests. With few exceptions, the favored subject involved one or another aspect of fluid flow in two dimensions.




Image Models (and their Speech Model Cousins)


Book Description

This IMA Volume in Mathematics and its Applications IMAGE MODELS (AND THEIR SPEECH MODEL COUSINS) is based on the proceedings of a workshop that was an integral part of the 1993-94 IMA program on "Emerging Applications of Probability." We thank Stephen E. Levinson and Larry Shepp for organizing the workshop and for editing the proceedings. We also take this opportunity to thank the National Science Foundation, the Army Research Office, and the National Security Agency, whose financial support made the workshop possible. A vner Friedman Willard Miller, Jr. v PREFACE This volume is an attempt to explore the interface between two diverse areas of applied mathematics that are both "customers" of the maximum likelihood methodology: emission tomography (on the one hand) and hid den Markov models as an approach to speech understanding (on the other hand). There are other areas where maximum likelihood is used, some of which are represented in this volume: parsing of text (Jelinek), microstruc ture of materials (Ji), and DNA sequencing (Nelson). Most of the partici pants were in the main areas of speech or emission density reconstruction. Of course, there are many other areas where maximum likelihood is used that are not represented here.




Evolutionary Algorithms


Book Description

This IMA Volume in Mathematics and its Applications EVOLUTIONARY ALGORITHMS is based on the proceedings of a workshop that was an integral part of the 1996-97 IMA program on "MATHEMATICS IN HIGH-PERFORMANCE COMPUTING." I thank Lawrence David Davis (Tica Associates), Kenneth De Jong (Computer Science, George Mason University), Michael D. Vose (Computer Science, The University of Tennessee), and L. Darrell Whitley (Computer Science, Colorado State University) for their excellent work in organizing the workshop and for editing the proceedings. Further appreciation is ex tended to Donald G. Truhlar (Chemistry and Supercomputing Institute, University of Minnesota) who was also one of the workshop organizers. In addition, I also take this opportunity to thank the National Science Foundation (NSF), Minnesota Supercomputing Institute (MSI), and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr., Professor and Director v PREFACE The IMA Workshop on Evolutionary Algorithms brought together many of the top researchers working in the area of Evolutionary Com putation for a week of intensive interaction. The field of Evolutionary Computation has developed significantly over the past 30 years and today consists a variety of subfields such as genetic algorithms, evolution strate gies, evolutionary programming, and genetic programming, each with their own algorithmic perspectives and goals.




Mathematical Models for Biological Pattern Formation


Book Description

This 121st IMA volume, entitled MATHEMATICAL MODELS FOR BIOLOGICAL PATTERN FORMATION is the first of a new series called FRONTIERS IN APPLICATION OF MATHEMATICS. The FRONTIERS volumes are motivated by IMA pro grams and workshops, but are specially planned and written to provide an entree to and assessment of exciting new areas for the application of mathematical tools and analysis. The emphasis in FRONTIERS volumes is on surveys, exposition and outlook, to attract more mathematicians and other scientists to the study of these areas and to focus efforts on the most important issues, rather than papers on the most recent research results aimed at an audience of specialists. The present volume of peer-reviewed papers grew out of the 1998-99 IMA program on "Mathematics in Biology," in particular the Fall 1998 em phasis on "Theoretical Problems in Developmental Biology and Immunol ogy." During that period there were two workshops on Pattern Formation and Morphogenesis, organized by Professors Murray, Maini and Othmer. James Murray was one of the principal organizers for the entire year pro gram. I am very grateful to James Murray for providing an introduction, and to Philip Maini and Hans Othmer for their excellent work in planning and preparing this first FRONTIERS volume. I also take this opportunity to thank the National Science Foundation, whose financial support of the IMA made the Mathematics in Biology pro gram possible.




Wave Propagation in Complex Media


Book Description

This IMA Volume in Mathematics and its Applications WAVE PROPAGATION IN COMPLEX MEDIA is based on the proceedings of two workshops: • Wavelets, multigrid and other fast algorithms (multipole, FFT) and their use in wave propagation and • Waves in random and other complex media. Both workshops were integral parts of the 1994-1995 IMA program on "Waves and Scattering." We would like to thank Gregory Beylkin, Robert Burridge, Ingrid Daubechies, Leonid Pastur, and George Papanicolaou for their excellent work as organizers of these meetings. We also take this opportunity to thank the National Science Foun dation (NSF), the Army Research Office (ARO, and the Office of Naval Research (ONR), whose financial support made these workshops possible. A vner Friedman Robert Gulliver v PREFACE During the last few years the numerical techniques for the solution of elliptic problems, in potential theory for example, have been drastically improved. Several so-called fast methods have been developed which re duce the required computing time many orders of magnitude over that of classical algorithms. The new methods include multigrid, fast Fourier transforms, multi pole methods and wavelet techniques. Wavelets have re cently been developed into a very useful tool in signal processing, the solu tion of integral equation, etc. Wavelet techniques should be quite useful in many wave propagation problems, especially in inhomogeneous and nonlin ear media where special features of the solution such as singularities might be tracked efficiently.




Particulate Flows


Book Description

This IMA Volume in Mathematics and its Applications PARTICULATE FLOWS: PROCESSING AND RHEOLOGY is based on the proceedings of a very successful one-week workshop with the same title, which was an integral part of the 1995-1996 IMA program on "Mathematical Methods in Materials Science." We would like to thank Donald A. Drew, Daniel D. Joseph, and Stephen L. Passman for their excellent work as organizers of the meeting. We also take this opportunity to thank the National Science Foun dation (NSF), the Army Research Office (ARO) and the Office of Naval Research (ONR), whose financial support made the workshop possible. A vner Friedman Robert Gulliver v PREFACE The workshop on Particulate Flows: Processing and Rheology was held January 8-12, 1996 at the Institute for Mathematics and its Applications on the University of Minnesota Twin Cities campus as part of the 1995- 96 Program on Mathematical Methods in Materials Science. There were about forty participants, and some lively discussions, in spite of the fact that bad weather on the east coast kept some participants from attending, and caused scheduling changes throughout the workshop. Heterogeneous materials can behave strangely, even in simple flow sit uations. For example, a mixture of solid particles in a liquid can exhibit behavior that seems solid-like or fluid-like, and attempting to measure the "viscosity" of such a mixture leads to contradictions and "unrepeatable" experiments. Even so, such materials are commonly used in manufacturing and processing.







Parallel Solution of Partial Differential Equations


Book Description

This IMA Volume in Mathematics and its Applications PARALLEL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS is based on the proceedings of a workshop with the same title. The work shop was an integral part of the 1996-97IMA program on "MATHEMAT ICS IN HIGH-PERFORMANCE COMPUTING." I would like to thank Petter Bj0rstad of the Institutt for Informatikk, University of Bergen and Mitchell Luskin of the School of Mathematics, University of Minnesota for their excellent work as organizers of the meeting and for editing the proceedings. I also take this opportunity to thank the National Science Founda tion (NSF), Department of Energy (DOE), and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr., Professor and Director v PREFACE The numerical solution of partial differential equations has been of major importance to the development of many technologies and has been the target of much of the development of parallel computer hardware and software. Parallel computers offer the promise of greatly increased perfor mance and the routine calculation of previously intractable problems. The papers in this volume were presented at the IMA workshop on the Paral lel Solution of PDE held during June 9-13, 1997. The workshop brought together leading numerical analysts, computer scientists, and engineers to assess the state-of-the-art and to consider future directions.