Nonlinear Phenomena In Physics Of Fluids And Plasmas - Proceedings Of The Enea Workshop On Nonlinear Dynamics – Volume 2


Book Description

This Workshop in nonlinear dynamics and mathematical physics, organized by the Italian Nuclear Energy Agency (ENEA) in Bologna, is intended to give an updated overview of modern trends in the field of nonlinear dynamics with emphasis on applications to physics, quantum theory, plasma physics and fluid dynamics, optics and electrodynamics, computer simulation, and neural networks.




Nonlinear Phenomena in Physics of Fluids and Plasmas


Book Description

Scientists from the similar fields of fluid and plasma dynamics, who met at an Italian Commission for Nuclear and Alternative Energy Sources workshop at Bologna, October 1989, compare findings on such matters as thermal convection, numerical simulations of dynamical and stochastically-perturbed fluids, plasma-wave interactions, and anomalous transport in confined plasmas. No index. Acidic paper. Annotation copyrighted by Book News, Inc., Portland, OR










Chaotic Dynamics and Transport in Fluids and Plasmas


Book Description

Market: Students and researchers in chaos, plasma physics, and fluid transport. This superb collection of invited papers offers an excellent overview of the current status and future trends in chaotic dynamics, plasma and fluid physics, nonlinear phenomena and chaos, and transport and turbulence studies.




Lectures on Non-linear Plasma Kinetics


Book Description

Lectures on Non-linear Plasma Kinetics is an introduction to modern non-linear plasma physics showing how many of the techniques of modern non-linear physics find applications in plasma physics and how, in turn, the results of this research find applications in astrophysics. Emphasis is given to explaining the physics of nonlinear processes and the radical change of cross-sections by collective effects. The author discusses new nonlinear phenomena involving the excitation of coherent nonlinear structures and the dynamics of their random motions in relation to new self-organization processes. He also gives a detailed description of applications of the general theory to various research fields, including the interaction of powerful radiation with matter, controlled thermonuclear research, etc.




Nonlinear Physics of Plasmas


Book Description

A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.




Nonlinear Dynamics and Chaotic Phenomena: An Introduction


Book Description

This book starts with a discussion of nonlinear ordinary differential equations, bifurcation theory and Hamiltonian dynamics. It then embarks on a systematic discussion of the traditional topics of modern nonlinear dynamics -- integrable systems, Poincaré maps, chaos, fractals and strange attractors. The Baker’s transformation, the logistic map and Lorenz system are discussed in detail in view of their central place in the subject. There is a detailed discussion of solitons centered around the Korteweg-deVries equation in view of its central place in integrable systems. Then, there is a discussion of the Painlevé property of nonlinear differential equations which seems to provide a test of integrability. Finally, there is a detailed discussion of the application of fractals and multi-fractals to fully-developed turbulence -- a problem whose understanding has been considerably enriched by the application of the concepts and methods of modern nonlinear dynamics. On the application side, there is a special emphasis on some aspects of fluid dynamics and plasma physics reflecting the author’s involvement in these areas of physics. A few exercises have been provided that range from simple applications to occasional considerable extension of the theory. Finally, the list of references given at the end of the book contains primarily books and papers used in developing the lecture material this volume is based on. This book has grown out of the author’s lecture notes for an interdisciplinary graduate-level course on nonlinear dynamics. The basic concepts, language and results of nonlinear dynamical systems are described in a clear and coherent way. In order to allow for an interdisciplinary readership, an informal style has been adopted and the mathematical formalism has been kept to a minimum. This book is addressed to first-year graduate students in applied mathematics, physics, and engineering, and is useful also to any theoretically inclined researcher in the physical sciences and engineering. This second edition constitutes an extensive rewrite of the text involving refinement and enhancement of the clarity and precision, updating and amplification of several sections, addition of new material like theory of nonlinear differential equations, solitons, Lagrangian chaos in fluids, and critical phenomena perspectives on the fluid turbulence problem and many new exercises.