Nonlinear Physics with Maple for Scientists and Engineers


Book Description

Philosophy of the Text This text has been designed to be an introductory survey of the basic concepts and applied mathematical methods of nonlinear science. Students in engineer ing, physics, chemistry, mathematics, computing science, and biology should be able to successfully use this text. In an effort to provide the students with a cutting edge approach to one of the most dynamic, often subtle, complex, and still rapidly evolving, areas of modern research-nonlinear physics-we have made extensive use of the symbolic, numeric, and plotting capabilities of Maple V Release 4 applied to examples from these disciplines. No prior knowledge of Maple or computer programming is assumed, the reader being gently introduced to Maple as an auxiliary tool as the concepts of nonlinear science are developed. The diskette which accompanies the text gives a wide variety of illustrative nonlinear examples solved with Maple. An accompanying laboratory manual of experimental activities keyed to the text allows the student the option of "hands on" experience in exploring nonlinear phenomena in the REAL world. Although the experiments are easy to perform, they give rise to experimental and theoretical complexities which are not to be underestimated. The Level of the Text The essential prerequisites for the first eight chapters of this text would nor mally be one semester of ordinary differential equations and an intermediate course in classical mechanics.




Laboratory Manual for Nonlinear Physics with Maple for Scientists and Engineers


Book Description

Science demands that all theory must be checked by experiment. Richard Feyn man, Nobel Laureate in physics (1965), reminds us in a wonderful quote that "The test of all knowledge is experiment. Experiment is the sole judge of sci entific truth. " 1 It is because nonlinear physics can be so profoundly counter intuitive that these laboratory investigations are so important. This manual is designed to be used with the text Nonlinear Physics with Maple for Scientists and Engineers. Understanding is enhanced when experiments are used to check so please attempt as many of the activities as you can. As you perform theory, these activities, we hope that you will be amazed and startled by strange behav ior, intrigued and terrorized by new ideas, and be able to amaze your friends as you relate your strange sightings! Remember that imagination is just as impor tant as knowledge, so exercise yours whenever possible. But please be careful, as nonlinear activities can be addicting, can provide fond memories, and can awaken an interest that lasts a lifetime. Although it has been said that a rose by any other name is still a rose, (with apologies to Shakespeare) the authors of this laboratory manual have, in an endeavor to encourage the use of these nonlinear investigations, called them experimental activities rather than experiments. A number of design innovations have been introduced: A.







Nonlinear Physics with Maple for Scientists and Engineers


Book Description

Philosophy of the Text This text presents an introductory survey of the basic concepts and applied mathematical methods of nonlinear science as well as an introduction to some simple related nonlinear experimental activities. Students in engineering, phys ics, chemistry, mathematics, computing science, and biology should be able to successfully use this book. In an effort to provide the reader with a cutting edge approach to one of the most dynamic, often subtle, complex, and still rapidly evolving, areas of modern research-nonlinear physics-we have made extensive use of the symbolic, numeric, and plotting capabilities of the Maple software sys tem applied to examples from these disciplines. No prior knowledge of Maple or computer programming is assumed, the reader being gently introduced to Maple as an auxiliary tool as the concepts of nonlinear science are developed. The CD-ROM provided with this book gives a wide variety of illustrative non linear examples solved with Maple. In addition, numerous annotated examples are sprinkled throughout the text and also placed on the CD. An accompanying set of experimental activities keyed to the theory developed in Part I of the book is given in Part II. These activities allow the student the option of "hands on" experience in exploring nonlinear phenomena in the REAL world. Although the experiments are easy to perform, they give rise to experimental and theoretical complexities which are not to be underestimated.




Nonlinear Physics with Mathematica for Scientists and Engineers


Book Description

Nonlinear physics continues to be an area of dynamic modern research, with applications to physics, engineering, chemistry, mathematics, computer science, biology, medicine and economics. In this text extensive use is made of the Mathematica computer algebra system. No prior knowledge of Mathematica or programming is assumed. This book includes 33 experimental activities that are designed to deepen and broaden the reader's understanding of nonlinear physics. These activities are correlated with Part I, the theoretical framework of the text.




Chaos and Nonlinear Dynamics


Book Description

This book introduces readers to the full range of current and background activity in the rapidly growing field of nonlinear dynamics. It uses a step-by-step introduction to dynamics and geometry in state space to help in understanding nonlinear dynamics and includes a thorough treatment of both differential equation models and iterated map models as well as a derivation of the famous Feigenbaum numbers. It is the only introductory book available that includes the important field of pattern formation and a survey of the controversial questions of quantum chaos. This second edition has been restructured for easier use and the extensive annotated references are updated through January 2000 and include many web sites for a number of the major nonlinear dynamics research centers. With over 200 figures and diagrams, analytic and computer exercises this book is a necessity for both the classroom and the lab.




Nonlinear Physics with Mathematica for Scientists and Engineers


Book Description

Nonlinear physics continues to be an area of dynamic modern research, with applications to physics, engineering, chemistry, mathematics, computer science, biology, medicine and economics. In this text extensive use is made of the Mathematica computer algebra system. No prior knowledge of Mathematica or programming is assumed. This book includes 33 experimental activities that are designed to deepen and broaden the reader's understanding of nonlinear physics. These activities are correlated with Part I, the theoretical framework of the text.







MLI Physics Collection


Book Description

This digital collection of twelve book length titles encompasses all of the major subject areas of physics. All twelve titles are combined into one easily downloadable file and are fully-searchable in a Web.pdf, bookmarked, file format. Titles include electromagnetism, particle physics, quantum mechanics, theory of relativity, mathematical methods for physics, computational physics, electrical engineering experiments, multiphysics modeling, solid state physics, radio astronomy, Newtonian mechanics, and physics lab experiments. FEATURES: • Includes 12 full length book titles in one, fully searchable, Web.pdf file • Each book title is preceded by a descriptive page with overview and features • All titles include the complete front matter, text, and end matter from the original printed version • Over 5000 pages of physics information in one file • Complete file downloads in less than two minutes LIST OF TITLES Particle Physics. Robert Purdy, PhD Mathematical Methods for Physics Using MATLAB and Maple. J. Claycomb, PhD The Special Theory of Relativity. Dennis Morris, PhD Computational Physics. Darren Walker, PhD Quantum Mechanics. Dennis Morris, PhD Basic Electromagnetic Theory. James Babington, PhD Physics Lab Experiments. Matthew M. J. French, PhD Newtonian Mechanics. Derek Raine, PhD Solid State Physics. David Schmool, PhD Multiphysics Modeling Using COMSOL5 and MATLAB. R. Pryor, PhD Radio Astronomy. S. Joardar, PhD Electrical Engineering Experiments. G.P. Chhalotra, PhD




Computer Algebra Recipes for Mathematical Physics


Book Description

* Uses a pedagogical approach that makes a mathematically challenging subject easier and more fun to learn * Self-contained and standalone text that may be used in the classroom, for an online course, for self-study, as a reference * Using MAPLE allows the reader to easily and quickly change the models and parameters