Nonlinear Polymer Rheology


Book Description

Integrating latest research results and characterization techniques, this book helps readers understand and apply fundamental principles in nonlinear polymer rheology. The author connects the basic theoretical framework with practical polymer processing, which aids practicing scientists and engineers to go beyond the existing knowledge and explore new applications. Although it is not written as a textbook, the content can be used in an upper undergraduate and first year graduate course on polymer rheology. • Describes the emerging phenomena and associated conceptual understanding in the field of nonlinear polymer rheology • Incorporates details on latest experimental discoveries and provides new methodology for research in polymer rheology • Integrates latest research results and new characterization techniques like particle tracking velocimetric method • Focuses on the issues concerning the conceptual and phenomenological foundations for polymer rheology • Has a companion website for readers to access with videos complementing the content within several chapters




Nonlinear Polymer Rheology


Book Description

Integrating latest research results and characterization techniques, this book helps readers understand and apply fundamental principles in nonlinear polymer rheology. The author connects the basic theoretical framework with practical polymer processing, which aids practicing scientists and engineers to go beyond the existing knowledge and explore new applications. Although it is not written as a textbook, the content can be used in an upper undergraduate and first year graduate course on polymer rheology. • Describes the emerging phenomena and associated conceptual understanding in the field of nonlinear polymer rheology • Incorporates details on latest experimental discoveries and provides new methodology for research in polymer rheology • Integrates latest research results and new characterization techniques like particle tracking velocimetric method • Focuses on the issues concerning the conceptual and phenomenological foundations for polymer rheology • Has a companion website for readers to access with videos complementing the content within several chapters




Polymer Rheology


Book Description




Rheology of Polymer Blends and Nanocomposites


Book Description

Rheology of Polymer Blends and Nanocomposites: Theory, Modelling and Applications focuses on rheology in polymer nanocomposites. It provides readers with a solid grounding in the fundamentals of rheology, with an emphasis on recent advancements. Chapters explore potential future applications for nanocomposites and polymer blends, giving readers a thorough understanding of the specific features derived from rheology as a tool for the study of polymer blends and nanocomposites. This book is ideal for industrial and academic researchers in the field of polymer blends and nanocomposites, but is also a great resource for anyone who wants to learn about the applications of rheology. - Sets out the principles of rheology as it is applied to polymer blends and nanocomposites - Demonstrates how rheological techniques are best applied to different classes of nanocomposites - Assesses the opportunities and major challenges of rheological approaches to polymer blends and nanocomposites




Nonlinear Dynamics with Polymers


Book Description

Closing a gap in the literature, this is the first comprehensive handbook on this modern and important polymer topic. Edited by highly experienced and top scientists in the field, this ready reference covers all aspects, including material science, biopolymers, gels, phase separating systems, frontal polymerization and much more. The introductory chapter offers the perfect starting point for the non-expert.




Viscoelasticity of Polymers


Book Description

This book offers a comprehensive introduction to polymer rheology with a focus on the viscoelastic characterization of polymeric materials. It contains various numerical algorithms for the processing of viscoelastic data, from basic principles to advanced examples which are hard to find in the existing literature. The book takes a multidisciplinary approach to the study of the viscoelasticity of polymers, and is self-contained, including the essential mathematics, continuum mechanics, polymer science and statistical mechanics needed to understand the theories of polymer viscoelasticity. It covers recent achievements in polymer rheology, such as theoretical and experimental aspects of large amplitude oscillatory shear (LAOS), and numerical methods for linear viscoelasticity, as well as new insights into the interpretation of experimental data. Although the book is balanced between the theoretical and experimental aspects of polymer rheology, the author’s particular interest in the theoretical side will not remain hidden. Aimed at readers familiar with the mathematics and physics of engineering at an undergraduate level, the multidisciplinary approach employed enables researchers with various scientific backgrounds to expand their knowledge of polymer rheology in a systematic way.




Viscoelastic Properties of Polymers


Book Description

Viscoelastic behavior reflects the combined viscous and elastic responses, under mechanical stress, of materials which are intermediate between liquids and solids in character. Polymers the basic materials of the rubber and plastic industries and important to the textile, petroleum, automobile, paper, and pharmaceutical industries as well exhibit viscoelasticity to a pronounced degree. Their viscoelastic properties determine the mechanical performance of the final products of these industries, and also the success of processing methods at intermediate stages of production. Viscoelastic Properties of Polymers examines, in detail, the effects of the many variables on which the basic viscoelastic properties depend. These include temperature, pressure, and time; polymer chemical composition, molecular weight and weight distribution, branching and crystallinity; dilution with solvents or plasticizers; and mixture with other materials to form composite systems. With guidance by molecular theory, the dependence of viscoelastic properties on these variables can be simplified by introducing certain ancillary concepts such as the fractional free volume, the monomeric friction coefficient, and the spacing between entanglement loci, to provide a qualitative understanding and in many cases a quantitative prediction of how to achieve desired results. The phenomenological theory of viscoelasticity which permits interrelation of the results of different types of experiments is presented first, with many useful approximation procedures for calculations given. A wide variety of experimental methods is then described, with critical evaluation of their applicability to polymeric materials of different consistencies and in different regions of the time scale (or, for oscillating deformations, the frequency scale). A review of the present state of molecular theory follows, so that viscoelasticity can be related to the motions of flexible polymer molecules and their entanglements and network junctions. The dependence of viscoestic properties on temperature and pressure, and its descriptions using reduced variables, are discussed in detail. Several chapters are then devoted to the dependence of viscoelastic properties on chemical composition, molecular weight, presence of diluents, and other features, for several characteristic classes of polymer materials. Finally, a few examples are given to illustrate the many potential applications of these principles to practical problems in the processing and use of rubbers, plastics, and fibers, and in the control of vibration and noise. The third edition has been brought up to date to reflect the important developments, in a decade of exceptionally active research, which have led to a wider use of polymers, and a wider recognition of the importance and range of application of viscoelastic properties. Additional data have been incorporated, and the book s chapters on dilute solutions, theory of undiluted polymers, plateau and terminal zones, cross-linked polymers, and concentrated solutions have been extensively rewritten to take into account new theories and new experimental results. Technical managers and research workers in the wide range of industries in which polymers play an important role will find that the book provides basic information for practical applications, and graduate students in chemistry and engineering will find, in its illustrations with real data and real numbers, an accessible introduction to the principles of viscoelasticity.




Viscoelasticity and Rheology


Book Description

Viscoelasticity and Rheology covers the proceedings of a symposium by the same title, conducted by the Mathematics Research Center held at the University of Wisconsin-Madison on October 16-18, 1984. The contributions to the symposium are divided into four broad categories, namely, experimental results, constitutive theories, mathematical analysis, and computation. This 16-chapter work begins with experimental topics, including the motion of bubbles in viscoelastic fluids, wave propagation in viscoelastic solids, flows through contractions, and cold-drawing of polymers. The next chapters covering constitutive theories explore the molecular theories for polymer solutions and melts based on statistical mechanics, the use and limitations of approximate constitutive theories, a comparison of constitutive laws based on various molecular theories, network theories and some of their advantages in relation to experiments, and models for viscoplasticity. These topics are followed by discussions of the existence, regularity, and development of singularities, change of type, interface problems in viscoelasticity, existence for initial value problems and steady flows, and propagation and development of singularities. The remaining chapters deal with the numerical simulation of flow between eccentric cylinders, flow around spheres and bubbles, the hole pressure problem, and a review of computational problems related to various constitutive laws. This book will prove useful to chemical engineers, researchers, and students.




Topological Polymer Chemistry


Book Description

There are examples aplenty in the macroscopic world that demonstrate the form of objects directing their functions and properties. On the other hand, the fabrication of extremely small objects having precisely defined structures has only recently become an attractive challenge, which is now opening the door to nanoscience and nanotechnology.In the field of synthetic polymer chemistry, a number of critical breakthroughs have been achieved during the first decade of this century to produce an important class of polymers having a variety of cyclic and multicyclic topologies. These developments now offer unique opportunities in polymer materials design to create unprecedented properties and functions simply based on the form, i.e. topology, of polymer molecules.In this book on topological polymer chemistry, the important developments in this growing area will be collected for the first time, with particular emphasis on new conceptual insights for polymer chemistry and polymer materials. The book will systematically review topological polymer chemistry from basic aspects to practice, and give a broad overview of cyclic polymers covering new synthesis, structure characterization, basic properties/functions and the eventual applications.




Melt Rheology and Its Role in Plastics Processing


Book Description

This book is designed to fulfill a dual role. On the one hand it provides a description of the rheological behavior of molten poly mers. On the other, it presents the role of rheology in melt processing operations. The account of rheology emphasises the underlying principles and presents results, but not detailed deriva tions of equations. The processing operations are described qualita tively, and wherever possible the role of rheology is discussed quantitatively. Little emphasis is given to non-rheological aspects of processes, for example, the design of machinery. The audience for which the book is intended is also dual in It includes scientists and engineers whose work in the nature. plastics industry requires some knowledge of aspects of rheology. Examples are the polymer synthetic chemist who is concerned with how a change in molecular weight will affect the melt viscosity and the extrusion engineer who needs to know the effects of a change in molecular weight distribution that might result from thermal degra dation. The audience also includes post-graduate students in polymer science and engineering who wish to acquire a more extensive background in rheology and perhaps become specialists in this area. Especially for the latter audience, references are given to more detailed accounts of specialized topics, such as constitutive relations and process simulations. Thus, the book could serve as a textbook for a graduate level course in polymer rheology, and it has been used for this purpose.