Nonlinear Potential Theory of Degenerate Elliptic Equations


Book Description

A self-contained treatment appropriate for advanced undergraduates and graduate students, this text offers a detailed development of the necessary background for its survey of the nonlinear potential theory of superharmonic functions. 1993 edition.




Nonlinear Potential Theory on Metric Spaces


Book Description

The $p$-Laplace equation is the main prototype for nonlinear elliptic problems and forms a basis for various applications, such as injection moulding of plastics, nonlinear elasticity theory, and image processing. Its solutions, called p-harmonic functions, have been studied in various contexts since the 1960s, first on Euclidean spaces and later on Riemannian manifolds, graphs, and Heisenberg groups. Nonlinear potential theory of p-harmonic functions on metric spaces has been developing since the 1990s and generalizes and unites these earlier theories. This monograph gives a unified treatment of the subject and covers most of the available results in the field, so far scattered over a large number of research papers. The aim is to serve both as an introduction to the area for interested readers and as a reference text for active researchers. The presentation is rather self contained, but it is assumed that readers know measure theory and functional analysis. The first half of the book deals with Sobolev type spaces, so-called Newtonian spaces, based on upper gradients on general metric spaces. In the second half, these spaces are used to study p-harmonic functions on metric spaces, and a nonlinear potential theory is developed under some additional, but natural, assumptions on the underlying metric space. Each chapter contains historical notes with relevant references, and an extensive index is provided at the end of the book.




Journal of Fourier Analysis and Applications Special Issue


Book Description

The Journal of Fourier Analysis and Applications is a journal of the mathematical sciences devoted to Fourier analysis and its applications. The subject of Fourier analysis has had a major impact on the development of mathematics, on the understanding of many engineering and scientific phenomena, and on the solution of some of the most important problems in mathematics and the sciences. At the end of June 1993, a large Conference in Harmonic Analysis was held at the University of Paris-Sud at Orsay to celebrate the prominent role played by Jean-Pierre Kahane and his numerous achievements in this field. The large variety of topics discussed in this meeting, ranging from classical Harmonic Analysis to Probability Theory, reflects the intense mathematical curiosity and the broad mathematical interest of Jean-Pierre Kahane. Indeed, all of them are connected to his work. The mornings were devoted to plenary addresses while up to four parallel sessions took place in the afternoons. Altogether, there were about eighty speakers. This wide range of subjects appears in these proceedings which include thirty six articles.




Geometric Function Theory and Non-linear Analysis


Book Description

Iwaniec (math, Syracuse U.) and Martin (math, U. of Auckland) explain recent developments in the geometry of mappings, related to functions or deformations between subsets of the Euclidean n-space Rn and more generally between manifolds or other geometric objects. Material on mappings intersects with aspects of differential geometry, topology, partial differential equations, harmonic analysis, and the calculus of variations. Chapters cover topics such as conformal mappings, stability of the Mobius group, Sobolev theory and function spaces, the Liouville theorem, even dimensions, Picard and Montel theorems in space, uniformly quasiregular mappings, and quasiconformal groups. c. Book News Inc.




Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces


Book Description

This volume contains the expanded lecture notes of courses taught at the Emile Borel Centre of the Henri Poincare Institute (Paris). In the book, leading experts introduce recent research in their fields. The unifying theme is the study of heat kernels in various situations using related geometric and analytic tools. Topics include analysis of complex-coefficient elliptic operators, diffusions on fractals and on infinite-dimensional groups, heat kernel and isoperimetry on Riemannian manifolds, heat kernels and infinite dimensional analysis, diffusions and Sobolev-type spaces on metric spaces, quasi-regular mappings and $p$-Laplace operators, heat kernel and spherical inversion on $SL 2(C)$, random walks and spectral geometry on crystal lattices, isoperimetric and isocapacitary inequalities, and generating function techniques for random walks on graphs. This volume is suitable for graduate students and research mathematicians interested in random processes and analysis on manifolds.




Potential Theory on Infinite Networks


Book Description

The aim of the book is to give a unified approach to new developments in discrete potential theory and infinite network theory. The author confines himself to the finite energy case, but this does not result in loss of complexity. On the contrary, the functional analytic machinery may be used in analogy with potential theory on Riemann manifolds. The book is intended for researchers with interdisciplinary interests in one of the following fields: Markov chains, combinatorial graph theory, network theory, Dirichlet spaces, potential theory, abstract harmonic analysis, theory of boundaries.




Analysis And Topology


Book Description

The goal of this book is to investigate further the interdisciplinary interaction between Mathematical Analysis and Topology. It provides an attempt to study various approaches in the topological applications and influence to Function Theory, Calculus of Variations, Functional Analysis and Approximation Theory. The volume is dedicated to the memory of S Stoilow.




Quasiregular Mappings


Book Description

Quasiregular Mappings extend quasiconformal theory to the noninjective case.They give a natural and beautiful generalization of the geometric aspects ofthe theory of analytic functions of one complex variable to Euclidean n-space or, more generally, to Riemannian n-manifolds. This book is a self-contained exposition of the subject. A braod spectrum of results of both analytic and geometric character are presented, and the methods vary accordingly. The main tools are the variational integral method and the extremal length method, both of which are thoroughly developed here. Reshetnyak's basic theorem on discreteness and openness is used from the beginning, but the proof by means of variational integrals is postponed until near the end. Thus, the method of extremal length is being used at an early stage and leads, among other things, to geometric proofs of Picard-type theorems and a defect relation, which are some of the high points of the present book.




Quasiconformal Space Mappings


Book Description

This volume is a collection of surveys on function theory in euclidean n-dimensional spaces centered around the theme of quasiconformal space mappings. These surveys cover or are related to several topics including inequalities for conformal invariants and extremal length, distortion theorems, L(p)-theory of quasiconformal maps, nonlinear potential theory, variational calculus, value distribution theory of quasiregular maps, topological properties of discrete open mappings, the action of quasiconformal maps in special classes of domains, and global injectivity theorems. The present volume is the first collection of surveys on Quasiconformal Space Mappings since the origin of the theory in 1960 and this collection provides in compact form access to a wide spectrum of recent results due to well-known specialists. CONTENTS: G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen: Conformal invariants, quasiconformal maps and special functions.- F.W. Gehring: Topics in quasiconformal mappings.- T.Iwaniec: L(p)-theory of quasiregular mappings.- O. Martio: Partial differential equations and quasiregular mappings.- Yu.G. Reshetnyak: On functional classes invariant relative to homothetics.- S. Rickman: Picard's theorem and defect relation for quasiconformal mappings.- U. Srebro: Topological properties of quasiregular mappings.- J. V{is{l{: Domains and maps.- V.A. Zorich: The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems.