Nonlinear Stochastic PDEs


Book Description

This IMA Volume in Mathematics and its Applications NONLINEAR STOCHASTIC PDEs: HYDRODYNAMIC LIMIT AND BURGERS' TURBULENCE is based on the proceedings of the period of concentration on Stochas tic Methods for Nonlinear PDEs which was an integral part of the 1993- 94 IMA program on "Emerging Applications of Probability." We thank Tadahisa Funaki and Wojbor A. Woyczynski for organizing this meeting and for editing the proceedings. We also take this opportunity to thank the National Science Foundation and the Army Research Office, whose financial support made this workshop possible. A vner Friedman Willard Miller, Jr. xiii PREFACE A workshop on Nonlinear Stochastic Partial Differential Equations was held during the week of March 21 at the Institute for Mathematics and Its Applications at the University of Minnesota. It was part of the Special Year on Emerging Applications of Probability program put together by an organizing committee chaired by J. Michael Steele. The selection of topics reflected personal interests of the organizers with two areas of emphasis: the hydrodynamic limit problems and Burgers' turbulence and related models. The talks and the papers appearing in this volume reflect a number of research directions that are currently pursued in these areas.




Three Classes of Nonlinear Stochastic Partial Differential Equations


Book Description

The study of measure-valued processes in random environments has seen some intensive research activities in recent years whereby interesting nonlinear stochastic partial differential equations (SPDEs) were derived. Due to the nonlinearity and the non-Lipschitz continuity of their coefficients, new techniques and concepts have recently been developed for the study of such SPDEs. These include the conditional Laplace transform technique, the conditional mild solution, and the bridge between SPDEs and some kind of backward stochastic differential equations. This volume provides an introduction to these topics with the aim of attracting more researchers into this exciting and young area of research. It can be considered as the first book of its kind. The tools introduced and developed for the study of measure-valued processes in random environments can be used in a much broader area of nonlinear SPDEs.




Nonlinear Stochastic Pdes


Book Description




A Concise Course on Stochastic Partial Differential Equations


Book Description

These lectures concentrate on (nonlinear) stochastic partial differential equations (SPDE) of evolutionary type. There are three approaches to analyze SPDE: the "martingale measure approach", the "mild solution approach" and the "variational approach". The purpose of these notes is to give a concise and as self-contained as possible an introduction to the "variational approach". A large part of necessary background material is included in appendices.




Nonlinear Stochastic PDEs


Book Description

This IMA Volume in Mathematics and its Applications NONLINEAR STOCHASTIC PDEs: HYDRODYNAMIC LIMIT AND BURGERS' TURBULENCE is based on the proceedings of the period of concentration on Stochas tic Methods for Nonlinear PDEs which was an integral part of the 1993- 94 IMA program on "Emerging Applications of Probability." We thank Tadahisa Funaki and Wojbor A. Woyczynski for organizing this meeting and for editing the proceedings. We also take this opportunity to thank the National Science Foundation and the Army Research Office, whose financial support made this workshop possible. A vner Friedman Willard Miller, Jr. xiii PREFACE A workshop on Nonlinear Stochastic Partial Differential Equations was held during the week of March 21 at the Institute for Mathematics and Its Applications at the University of Minnesota. It was part of the Special Year on Emerging Applications of Probability program put together by an organizing committee chaired by J. Michael Steele. The selection of topics reflected personal interests of the organizers with two areas of emphasis: the hydrodynamic limit problems and Burgers' turbulence and related models. The talks and the papers appearing in this volume reflect a number of research directions that are currently pursued in these areas.




An Introduction to Nonlinear Partial Differential Equations


Book Description

Praise for the First Edition: "This book is well conceived and well written. The author has succeeded in producing a text on nonlinear PDEs that is not only quite readable but also accessible to students from diverse backgrounds." —SIAM Review A practical introduction to nonlinear PDEs and their real-world applications Now in a Second Edition, this popular book on nonlinear partial differential equations (PDEs) contains expanded coverage on the central topics of applied mathematics in an elementary, highly readable format and is accessible to students and researchers in the field of pure and applied mathematics. This book provides a new focus on the increasing use of mathematical applications in the life sciences, while also addressing key topics such as linear PDEs, first-order nonlinear PDEs, classical and weak solutions, shocks, hyperbolic systems, nonlinear diffusion, and elliptic equations. Unlike comparable books that typically only use formal proofs and theory to demonstrate results, An Introduction to Nonlinear Partial Differential Equations, Second Edition takes a more practical approach to nonlinear PDEs by emphasizing how the results are used, why they are important, and how they are applied to real problems. The intertwining relationship between mathematics and physical phenomena is discovered using detailed examples of applications across various areas such as biology, combustion, traffic flow, heat transfer, fluid mechanics, quantum mechanics, and the chemical reactor theory. New features of the Second Edition also include: Additional intermediate-level exercises that facilitate the development of advanced problem-solving skills New applications in the biological sciences, including age-structure, pattern formation, and the propagation of diseases An expanded bibliography that facilitates further investigation into specialized topics With individual, self-contained chapters and a broad scope of coverage that offers instructors the flexibility to design courses to meet specific objectives, An Introduction to Nonlinear Partial Differential Equations, Second Edition is an ideal text for applied mathematics courses at the upper-undergraduate and graduate levels. It also serves as a valuable resource for researchers and professionals in the fields of mathematics, biology, engineering, and physics who would like to further their knowledge of PDEs.




Stochastic Ordinary and Stochastic Partial Differential Equations


Book Description

Stochastic Partial Differential Equations analyzes mathematical models of time-dependent physical phenomena on microscopic, macroscopic and mesoscopic levels. It provides a rigorous derivation of each level from the preceding one and examines the resulting mesoscopic equations in detail. Coverage first describes the transition from the microscopic equations to the mesoscopic equations. It then covers a general system for the positions of the large particles.




Nonlinear Stochastic Evolution Problems in Applied Sciences


Book Description

This volume deals with the analysis of nonlinear evolution problems described by partial differential equations having random or stochastic parameters. The emphasis throughout is on the actual determination of solutions, rather than on proving the existence of solutions, although mathematical proofs are given when this is necessary from an applications point of view. The content is divided into six chapters. Chapter 1 gives a general presentation of mathematical models in continuum mechanics and a description of the way in which problems are formulated. Chapter 2 deals with the problem of the evolution of an unconstrained system having random space-dependent initial conditions, but which is governed by a deterministic evolution equation. Chapter 3 deals with the initial-boundary value problem for equations with random initial and boundary conditions as well as with random parameters where the randomness is modelled by stochastic separable processes. Chapter 4 is devoted to the initial-boundary value problem for models with additional noise, which obey Ito-type partial differential equations. Chapter 5 is essential devoted to the qualitative and quantitative analysis of the chaotic behaviour of systems in continuum physics. Chapter 6 provides indications on the solution of ill-posed and inverse problems of stochastic type and suggests guidelines for future research. The volume concludes with an Appendix which gives a brief presentation of the theory of stochastic processes. Examples, applications and case studies are given throughout the book and range from those involving simple stochasticity to stochastic illposed problems. For applied mathematicians, engineers and physicists whose work involves solving stochastic problems.




Backward Stochastic Differential Equations


Book Description

This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.




Stochastic Partial Differential Equations, Second Edition


Book Description

Explore Theory and Techniques to Solve Physical, Biological, and Financial Problems Since the first edition was published, there has been a surge of interest in stochastic partial differential equations (PDEs) driven by the Lévy type of noise. Stochastic Partial Differential Equations, Second Edition incorporates these recent developments and improves the presentation of material. New to the Second Edition Two sections on the Lévy type of stochastic integrals and the related stochastic differential equations in finite dimensions Discussions of Poisson random fields and related stochastic integrals, the solution of a stochastic heat equation with Poisson noise, and mild solutions to linear and nonlinear parabolic equations with Poisson noises Two sections on linear and semilinear wave equations driven by the Poisson type of noises Treatment of the Poisson stochastic integral in a Hilbert space and mild solutions of stochastic evolutions with Poisson noises Revised proofs and new theorems, such as explosive solutions of stochastic reaction diffusion equations Additional applications of stochastic PDEs to population biology and finance Updated section on parabolic equations and related elliptic problems in Gauss–Sobolev spaces The book covers basic theory as well as computational and analytical techniques to solve physical, biological, and financial problems. It first presents classical concrete problems before proceeding to a unified theory of stochastic evolution equations and describing applications, such as turbulence in fluid dynamics, a spatial population growth model in a random environment, and a stochastic model in bond market theory. The author also explores the connection of stochastic PDEs to infinite-dimensional stochastic analysis.