Nonlinear Stochastic Systems Theory and Applications to Physics


Book Description

Approach your problems from the right end and begin with the answers. Then one day, perhaps you will find the final answer. "The Hermit Clad In Crane Feathers" In R. van Gullk's The Chinese Haze Hurders. It Isn't that they can't see the solution. It IS that they can't see the problem. G. K. Chesterton. The Scandal of Father Brown. "The POint of a Pin." Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of k now ledge of m athemat i cs and re I ated fie I ds does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, COding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And In addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely Integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the eXisting classificatIOn schemes.




Stochastic Evolution Systems


Book Description

This monograph, now in a thoroughly revised second edition, develops the theory of stochastic calculus in Hilbert spaces and applies the results to the study of generalized solutions of stochastic parabolic equations. The emphasis lies on second-order stochastic parabolic equations and their connection to random dynamical systems. The authors further explore applications to the theory of optimal non-linear filtering, prediction, and smoothing of partially observed diffusion processes. The new edition now also includes a chapter on chaos expansion for linear stochastic evolution systems. This book will appeal to anyone working in disciplines that require tools from stochastic analysis and PDEs, including pure mathematics, financial mathematics, engineering and physics.




Stochastic Differential Systems Analysis and Filtering


Book Description

Gives applied methods for studying stochastic differential systems--in particular, the methods for finding the finite-dimensional distributions of the state vector and of the output of such systems, and also the estimation methods of the state and of the parameters of differential systems based on observations (filtering and extrapolation theory). Also studied are stochastic differential equations of general type with arbitrary processes and independent increments. The equations with Wiener processes are considered as a special case. The construction of stochastic differential systems in the book is based on Pugachev's equations for finite-dimensional characteristic functions of the processes determined by stochastic differential equations. Includes end-of-chapter problems.




Nonlinear Dynamics and Chaos


Book Description

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.




Nonlinear Stochastic Systems Theory and Applications to Physics


Book Description

Approach your problems from the right end and begin with the answers. Then one day, perhaps you will find the final answer. "The Hermit Clad In Crane Feathers" In R. van Gullk's The Chinese Haze Hurders. It Isn't that they can't see the solution. It IS that they can't see the problem. G. K. Chesterton. The Scandal of Father Brown. "The POint of a Pin." Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of k now ledge of m athemat i cs and re I ated fie I ds does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, COding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And In addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely Integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the eXisting classificatIOn schemes.




Chaotic Transitions in Deterministic and Stochastic Dynamical Systems


Book Description

The classical Melnikov method provides information on the behavior of deterministic planar systems that may exhibit transitions, i.e. escapes from and captures into preferred regions of phase space. This book develops a unified treatment of deterministic and stochastic systems that extends the applicability of the Melnikov method to physically realizable stochastic planar systems with additive, state-dependent, white, colored, or dichotomous noise. The extended Melnikov method yields the novel result that motions with transitions are chaotic regardless of whether the excitation is deterministic or stochastic. It explains the role in the occurrence of transitions of the characteristics of the system and its deterministic or stochastic excitation, and is a powerful modeling and identification tool. The book is designed primarily for readers interested in applications. The level of preparation required corresponds to the equivalent of a first-year graduate course in applied mathematics. No previous exposure to dynamical systems theory or the theory of stochastic processes is required. The theoretical prerequisites and developments are presented in the first part of the book. The second part of the book is devoted to applications, ranging from physics to mechanical engineering, naval architecture, oceanography, nonlinear control, stochastic resonance, and neurophysiology.




Stochastic Systems: Theory And Applications


Book Description

This book presents the general theory and basic methods of linear and nonlinear stochastic systems (StS) i.e. dynamical systems described by stochastic finite- and infinite-dimensional differential, integral, integrodifferential, difference etc equations. The general StS theory is based on the equations for characteristic functions and functionals. The book outlines StS structural theory, including direct numerical methods, methods of normalization, equivalent linearization and parametrization of one- and multi-dimensional distributions, based on moments, quasimoments, semi-invariants and orthogonal expansions. Special attention is paid to methods based on canonical expansions and integral canonical representations. About 500 exercises and problems are provided. The authors also consider applications in mathematics and mechanics, physics and biology, control and information processing, operations research and finance.




Decomposition Analysis Method in Linear and Nonlinear Differential Equations


Book Description

A Powerful Methodology for Solving All Types of Differential EquationsDecomposition Analysis Method in Linear and Non-Linear Differential Equations explains how the Adomian decomposition method can solve differential equations for the series solutions of fundamental problems in physics, astrophysics, chemistry, biology, medicine, and other scientif




Unimodality of Probability Measures


Book Description

The central theme of this monograph is Khinchin-type representation theorems. An abstract framework for unimodality, an example of applied functional analysis, is developed for the introduction of different types of unimodality and the study of their behaviour. Also, several useful consequences or ramifications tied to these notions are provided. Being neither an encyclopaedia, nor a historical overview, this book aims to serve as an understanding of the basic features of unimodality. Chapter 1 lays a foundation for the mathematical reasoning in the chapters following. Chapter 2 deals with the concept of Khinchin space, which leads to the introduction of beta-unimodality in Chapter 3. A discussion on several existing multivariate notions of unimodality concludes this chapter. Chapter 4 concerns Khinchin's classical unimodality, and Chapter 5 is devoted to discrete unimodality. Chapters 6 and 7 treat the concept of strong unimodality on R and to Ibragimov-type results characterising the probability measures which preserve unimodality by convolution, and the concept of slantedness, respectively. Most chapters end with comments, referring to historical aspects or supplying complementary information and open questions. A practical bibliography, as well as symbol, name and subject indices ensure efficient use of this volume. Audience: Both researchers and applied mathematicians in the field of unimodality will value this monograph, and it may be used in graduate courses or seminars on this subject too.




Gaussian Random Functions


Book Description

It is well known that the normal distribution is the most pleasant, one can even say, an exemplary object in the probability theory. It combines almost all conceivable nice properties that a distribution may ever have: symmetry, stability, indecomposability, a regular tail behavior, etc. Gaussian measures (the distributions of Gaussian random functions), as infinite-dimensional analogues of tht