Nonlinear Structures and Systems, Volume 1


Book Description

Nonlinear Structures & Systems, Volume 1: Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics, 2019, the first volume of eight from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Nonlinear Dynamics, including papers on: Nonlinear Reduced-order Modeling Jointed Structures: Identification, Mechanics, Dynamics Experimental Nonlinear Dynamics Nonlinear Model & Modal Interactions Nonlinear Damping Nonlinear Modeling & Simulation Nonlinearity & System Identification







Nonlinear Structures & Systems, Volume 1


Book Description

Nonlinear Structures & Systems, Volume 1: Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics, 2023, the first volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Nonlinear Dynamics, including papers on: Experimental Nonlinear Dynamics Jointed Structures: Identification, Mechanics, Dynamics Nonlinear Damping Nonlinear Modeling and Simulation Nonlinear Reduced-Order Modeling Nonlinearity and System Identification







Nonlinear Dynamics of Structures, Systems and Devices


Book Description

This first of three volumes from the inaugural NODYCON, held at the University of Rome, in February of 2019, presents papers devoted to Nonlinear Dynamics of Structures, Systems and Devices. The collection features both well-established streams of research as well as novel areas and emerging fields of investigation. Topics in Volume I include multi-scale dynamics: coexistence of multiple time/space scales, large system dynamics; dynamics of structures/industrial machines/equipment/facilities (e.g., cable transportation systems, suspension bridges, cranes, vehicles); nonlinear interactions: parametric vibrations with single/multi-frequency excitations, multiple external and autoparametric resonances in multi-dof systems; nonlinear system identification: parametric/nonparametric identification, data-driven identification; experimental dynamics: benchmark experiments, experimental methods, instrumentation techniques, measurements in harsh environments, experimental validation of nonlinear models; wave propagation, solitons, kinks, breathers; solution methods for pdes: Lie groups, Hirota’s method, perturbation methods, etc; nonlinear waves in media (granular materials, porous materials, materials with memory); composite structures: multi-layer, functionally graded, thermal loading; fluid/structure interaction; nonsmooth and retarded dynamics: systems with impacts, free play, stick-slip, friction hysteresis; nonlinear systems with time and/or space delays; stability of delay differential equations, differential-algebraic equations; space/time reduced-order modeling: enhanced discretization methods, center manifold reduction, nonlinear normal modes, normal forms; fractional-order systems; computational techniques: efficient algorithms, use of symbolic manipulators, integration of symbolic manipulation and numerical methods, use of parallel processors; and multibody dynamics: rigid and flexible multibody system dynamics, impact and contact mechanics, tire modeling, railroad vehicle dynamics, computational multibody dynamics.




Nonlinear Systems and Their Remarkable Mathematical Structures


Book Description

Nonlinear Systems and Their Remarkable Mathematical Structures aims to describe the recent progress in nonlinear differential equations and nonlinear dynamical systems (both continuous and discrete). Written by experts, each chapter is self-contained and aims to clearly illustrate some of the mathematical theories of nonlinear systems. The book should be suitable for some graduate and postgraduate students in mathematics, the natural sciences, and engineering sciences, as well as for researchers (both pure and applied) interested in nonlinear systems. The common theme throughout the book is on solvable and integrable nonlinear systems of equations and methods/theories that can be applied to analyze those systems. Some applications are also discussed. Features Collects contributions on recent advances in the subject of nonlinear systems Aims to make the advanced mathematical methods accessible to the non-expert in this field Written to be accessible to some graduate and postgraduate students in mathematics and applied mathematics Serves as a literature source in nonlinear systems




Nonlinear Structural Dynamics and Damping


Book Description

This book compiles recent research in the field of nonlinear dynamics, vibrations and damping applied to engineering structures. It addresses the modeling of nonlinear vibrations in beams, frames and complex mechanical systems, as well as the modeling of damping systems and viscoelastic materials applied to structural dynamics. The book includes several chapters related to solution techniques and signal analysis techniques. Last but not least, it deals with the identification of nonlinear responses applied to condition monitoring systems.




Nonlinear Structural Mechanics


Book Description

This book reviews the theoretical framework of nonlinear mechanics, covering computational methods, applications, parametric investigations of nonlinear phenomena and mechanical interpretation towards design. Builds skills via increasing levels of complexity.




Nonlinear Dynamics of Structures


Book Description

This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics. This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects. Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution are studied and the theoretical concepts and its programming algorithms are presented.




Analysis of Geometrically Nonlinear Structures


Book Description

The availability of computers has, in real terms, moved forward the practice of structural engineering. Where it was once enough to have any analysis given a complex configuration, the profession today is much more demanding. How engineers should be more demanding is the subject of this book. In terms of the theory of structures, the importance of geometric nonlinearities is explained by the theorem which states that "In the presence of prestress, geometric nonlinearities are of the same order of magnitude as linear elastic effects in structures. " This theorem implies that in most cases (in all cases of incremental analysis) geometric nonlinearities should be considered. And it is well known that problems of buckling, cable nets, fabric structures, ... REQUIRE the inclusion of geometric nonlinearities. What is offered in the book which follows is a unified approach (for both discrete and continuous systems) to geometric nonlinearities which incidentally does not require a discussion of large strain. What makes this all work is perturbation theory. Let the equations of equilibrium for a system be written as where P represents the applied loads, F represents the member forces or stresses, and N represents the operator which describes system equilibrium.