Nonlinearity in Condensed Matter


Book Description

The Sixth Annual Conference of the Center for Nonlinear Studies at the Los Alamos National Laboratory was held May 5-9, 1986, on the topic "Nonlinearity in Condensed Matter: Lessons from the Past and Prospects for the Future. " As conference organizers, we felt that the study of non linear phenomena in condensed matter had matured to the point where it made sense to take stock of the numerous lessons to be learned from a variety of contexts where nonlinearity plays a fundamental role and to evaluate the prospects for the growth of this general discipline. The successful 1978 Oxford Symposium on nonlinear (soliton) struc ture and dynamics in condensed matter (Springer Ser. Solid-State Sci. , Vol. 8) was held at a time when the ubiquity of solitons was just begin ning to be appreciated by the condensed matter community; in subsequent years the soliton paradigm has provided a rather useful framework for in vestigating a large number of phenomena, particularly in low-dimensional systems. Nevertheless, we felt that the importance of nonlinearity in wider arenas than "solitonics" merited a significant expansion in the scope of the conference over that of the 1978 symposium. Indeed, many of the lessons are quite general and their potential for cross-fertilization of otherwise poorly connected disciplines was certainly one of the prime motivations for this conference. Thus, while these proceedings contain many contribu tions pertaining to soliton behavior in different contexts, the reader will find much more as well, particularly in the later chapters.







Nonlinear Physical Phenomena - Proceedings Of The International Centre Of Condensed Matter Physics School


Book Description

Non-linear effects are basically manifested in a variety of physical phenomena such as defect mediated transitions, pattern formation, growth of aggregates, turbulence, chemical reactions, diffusion in porous media, biological information processing, etc. Many non-linear dynamical systems are extremely sensitive to small changes in the initial conditions. Different routes to chaos have been established and a new geometry, called fractal geometry, has been developed. The aim of this School is to review the main achievements of the modern theory of irregular structures and to discuss the exciting new trends in non-linear phenomena.




Physics of Nonlinear Optics


Book Description

The book is designed to serve as a textbook for courses offered to upper-undergraduate students enrolled in physics. The first edition of this book was published in 2014. As there is a demand for the next edition, it is quite natural to take note of the several advances that have occurred in the subject over the past five years and to decide which of these are appropriate for inclusion at the textbook level, given the fundamental nature and the significance of the subject area. This is the prime motivation for bringing out a revised second edition. Among the newer mechanisms and materials, the book introduces the super-continuum generation, which arises from an excellent interplay of the various mechanisms of optical nonlinearity. The topics covered in this book are quantum mechanics of nonlinear interaction of matter and radiation, formalism and phenomenology of nonlinear wave mixing processes, optical phase conjugation and applications, self-focusing and self-phase modulation and their role in pulse modification, nonlinear absorption mechanisms, and optical limiting applications, photonic switching and bi-stability, and physical mechanisms leading to a nonlinear response in a variety of materials. This book has emerged from an attempt to address the requirement of presenting the subject at the college level. This textbook includes rigorous features such as the elucidation of relevant basic principles of physics; a clear exposition of the ideas involved at an appropriate level; coverage of the physical mechanisms of non-linearity; updates on physical mechanisms and emerging photonic materials and emphasis on the experimental study of nonlinear interactions. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in physics and related courses.




Nonlinear PDE’s in Condensed Matter and Reactive Flows


Book Description

Nonlinear partial differential equations abound in modern physics. The problems arising in these fields lead to fascinating questions and, at the same time, progress in understanding the mathematical structures is of great importance to the models. Nevertheless, activity in one of the approaches is not always sufficiently in touch with developments in the other field. The book presents the joint efforts of mathematicians and physicists involved in modelling reactive flows, in particular superconductivity and superfluidity. Certain contributions are fundamental to an understanding of such cutting-edge research topics as rotating Bose-Einstein condensates, Kolmogorov-Zakharov solutions for weak turbulence equations, and the propagation of fronts in heterogeneous media.




Fluctuating Nonlinear Oscillators


Book Description

The book provides a unifying insight into a broad range of phenomena displayed by vibrational systems of current interest. The chapters complement each other to give an account of the major fundamental results and applications in quantum information, condensed matter physics, and engineering.




Encyclopedia of Nonlinear Science


Book Description

In 438 alphabetically-arranged essays, this work provides a useful overview of the core mathematical background for nonlinear science, as well as its applications to key problems in ecology and biological systems, chemical reaction-diffusion problems, geophysics, economics, electrical and mechanical oscillations in engineering systems, lasers and nonlinear optics, fluid mechanics and turbulence, and condensed matter physics, among others.




Mathematical Models of Non-Linear Excitations, Transfer, Dynamics, and Control in Condensed Systems and Other Media


Book Description

The articles in this book are derived from the Third International Conference of the same name, held June 29-July 3, 1998. Topics include: nonlinear exaltations in condensed systems, evolution of complex systems, dynamics and structure of molecular and biomolecular systems, mathematical models of transfer processes in nonlinear systems and numerical modeling and algorithms.




Introduction to Nonlinear Physics


Book Description

This textbook provides an introduction to the new science of nonlinear physics for advanced undergraduates, beginning graduate students, and researchers entering the field. The chapters, by pioneers and experts in the field, share a unified perspective. Nonlinear science developed out of the increasing ability to investigate and analyze systems for which effects are not simply linear functions of their causes; it is associated with such well-known code words as chaos, fractals, pattern formation, solitons, cellular automata, and complex systems. Nonlinear phenomena are important in many fields, including dynamical systems, fluid dynamics, materials science, statistical physics, and paritcel physics. The general principles developed in this text are applicable in a wide variety of fields in the natural and social sciences. The book will thus be of interest not only to physicists, but also to engineers, chemists, geologists, biologists, economists, and others interested in nonlinear phenomena. Examples and exercises complement the text, and extensive references provide a guide to research in the field.




Nonlinear Optics


Book Description

Clear, integrated coverage of all aspects of nonlinear optics—phenomena, materials, and devices Coauthored by George Stegeman, one of the most highly respected pioneers of nonlinear optics—with contributions on applications from Robert Stegeman—this book covers nonlinear optics from a combined physics, optics, materials science, and devices perspective. It offers a thoroughly balanced treatment of concepts, nonlinear materials, practical aspects of nonlinear devices, and current application areas. Beginning with the presentation of a simple electron on a spring model—to help readers make the leap from concepts to applications—Nonlinear Optics gives comprehensive explanations of second-order phenomena, derivation of nonlinear susceptibilities, third-order nonlinear effects, multi-wave mixing, scattering, and more. Coverage includes: Nonlinear response of materials at the molecular level Second-order nonlinear devices, their optimization and limitations The physical origins of second- and third-order nonlinearities Typical frequency dispersion of nonlinearities, explained in terms of simple two- and three-level models Ultrafast and ultrahigh intensity processes Practice problems demonstrating the design of such nonlinear devices as frequency doublers and optical oscillators Based on more than twenty years of lectures at the College of Optics and Photonics (CREOL) at the University of Central Florida, Nonlinear Optics introduces all topics from the ground up, making the material easily accessible not only for physicists, but also for chemists and materials scientists, as well as professionals in diverse areas of optics, from laser physics to electrical engineering.