Nonstandard Methods in Fixed Point Theory


Book Description

A unified account of the major new developments inspired by Maurey's application of Banach space ultraproducts to the fixed point theory for non-expansive mappings is given in this text. The first third of the book is devoted to laying a careful foundation for the actual fixed point theoretic results which follow. Set theoretic and Banach space ultraproducts constructions are studied in detail in the second part of the book, while the remainder of the book gives an introduction to the classical fixed point theory in addition to a discussion of normal structure. This is the first book which studies classical fixed point theory for non-expansive maps in the view of non-standard methods.




Nonstandard Methods in Functional Analysis


Book Description

In the early 1960s, by using techniques from the model theory of first-order logic, Robinson gave a rigorous formulation and extension of Leibniz'' infinitesimal calculus. Since then, the methodology has found applications in a wide spectrum of areas in mathematics, with particular success in the probability theory and functional analysis. In the latter, fruitful results were produced with Luxemburg''s invention of the nonstandard hull construction. However, there is still no publication of a coherent and self-contained treatment of functional analysis using methods from nonstandard analysis. This publication aims to fill this gap.




An Introduction to Metric Spaces and Fixed Point Theory


Book Description

Diese Einfuhrung in das Gebiet der metrischen Raume richtet sich in erster Linie nicht an Spezialisten, sondern an Anwender der Methode aus den verschiedensten Bereichen der Naturwissenschaften. Besonders ausfuhrlich und anschaulich werden die Grundlagen von metrischen Raumen und Banach-Raumen erklart, Anhange enthalten Informationen zu verschiedenen Schlusselkonzepten der Mengentheorie (Zornsches Lemma, Tychonov-Theorem, transfinite Induktion usw.). Die hinteren Kapitel des Buches beschaftigen sich mit fortgeschritteneren Themen.




Measures of Noncompactness in Metric Fixed Point Theory


Book Description

What is clear and easy to grasp attracts us; complications deter David Hilbert The material presented in this volume is based on discussions conducted in peri odically held seminars by the Nonlinear Functional Analysis research group of the University of Seville. This book is mainly addressed to those working or aspiring to work in the field of measures of noncompactness and metric fixed point theory. Special em phasis is made on the results in metric fixed point theory which were derived from geometric coefficients defined by means of measures of noncompactness and on the relationships between nonlinear operators which are contractive for different measures. Several topics in these notes can be found either in texts on measures of noncompactness (see [AKPRSj, [BG]) or in books on metric fixed point theory (see [GK1], [Sm], [Z]). Many other topics have come from papers where the authors of this volume have published the results of their research over the last ten years. However, as in any work of this type, an effort has been made to revise many proofs and to place many others in a correct setting. Our research was made possible by partial support of the D.G.I.C.y'T. and the Junta de Andalucia.




Fixed Point Theory


Book Description

The theory of Fixed Points is one of the most powerful tools of modern mathematics. This book contains a clear, detailed and well-organized presentation of the major results, together with an entertaining set of historical notes and an extensive bibliography describing further developments and applications. From the reviews: "I recommend this excellent volume on fixed point theory to anyone interested in this core subject of nonlinear analysis." --MATHEMATICAL REVIEWS




Topics in Fixed Point Theory


Book Description

The purpose of this contributed volume is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The book presents information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers. Key topics covered include Banach contraction theorem, hyperconvex metric spaces, modular function spaces, fixed point theory in ordered sets, topological fixed point theory for set-valued maps, coincidence theorems, Lefschetz and Nielsen theories, systems of nonlinear inequalities, iterative methods for fixed point problems, and the Ekeland’s variational principle.




Sequential Models of Mathematical Physics


Book Description

The equations of mathematical physics are the mathematical models of the large class of phenomenon of physics, chemistry, biology, economics, etc. In Sequential Models of Mathematical Physics, the author considers the justification of the process of constructing mathematical models. The book seeks to determine the classic, generalized and sequential solutions, the relationship between these solutions, its direct physical sense, the methods of its practical finding, and its existence. Features Describes a sequential method based on the construction of space completion, as well as its applications in number theory, the theory of distributions, the theory of extremum, and mathematical physics Presentation of the material is carried out on the simplest example of a one-dimensional stationary heat transfer process; all necessary concepts and constructions are introduced and illustrated with elementary examples, which makes the material accessible to a wide area of readers The solution of a specific mathematical problem is obtained as a result of the joint application of methods and concepts from completely different mathematical directions




Topics in Metric Fixed Point Theory


Book Description

Metric Fixed Point Theory has proved a flourishing area of research for many mathematicians. This book aims to offer the mathematical community an accessible, self-contained account which can be used as an introduction to the subject and its development. It will be understandable to a wide audience, including non-specialists, and provide a source of examples, references and new approaches for those currently working in the subject.




Techniques of Constructive Analysis


Book Description

This book is an introduction to constructive mathematics with an emphasis on techniques and results obtained in the last twenty years. The text covers fundamental theory of the real line and metric spaces, focusing on locatedness in normed spaces and with associated results about operators and their adjoints on a Hilbert space. The first appendix gathers together some basic notions about sets and orders, the second gives the axioms for intuitionistic logic. No background in intuitionistic logic or constructive analysis is needed in order to read the book, but some familiarity with the classical theories of metric, normed and Hilbert spaces is necessary.




Infinitesimal Analysis


Book Description

Infinitesimal analysis, once a synonym for calculus, is now viewed as a technique for studying the properties of an arbitrary mathematical object by discriminating between its standard and nonstandard constituents. Resurrected by A. Robinson in the early 1960's with the epithet 'nonstandard', infinitesimal analysis not only has revived the methods of infinitely small and infinitely large quantities, which go back to the very beginning of calculus, but also has suggested many powerful tools for research in every branch of modern mathematics. The book sets forth the basics of the theory, as well as the most recent applications in, for example, functional analysis, optimization, and harmonic analysis. The concentric style of exposition enables this work to serve as an elementary introduction to one of the most promising mathematical technologies, while revealing up-to-date methods of monadology and hyperapproximation. This is a companion volume to the earlier works on nonstandard methods of analysis by A.G. Kusraev and S.S. Kutateladze (1999), ISBN 0-7923-5921-6 and Nonstandard Analysis and Vector Lattices edited by S.S. Kutateladze (2000), ISBN 0-7923-6619-0