Nontraditional Machining Processes


Book Description

Nontraditional machining employs processes that remove material by various methods involving thermal, electrical, chemical and mechanical energy or even combinations of these. Nontraditional Machining Processes covers recent research and development in techniques and processes which focus on achieving high accuracies and good surface finishes, parts machined without burrs or residual stresses especially with materials that cannot be machined by conventional methods. With applications to the automotive, aircraft and mould and die industries, Nontraditional Machining Processes explores different aspects and processes through dedicated chapters. The seven chapters explore recent research into a range of topics including laser assisted manufacturing, abrasive water jet milling and hybrid processes. Students and researchers will find the practical examples and new processes useful for both reference and for developing further processes. Industry professionals and materials engineers will also find Nontraditional Machining Processes to be a source of ideas and processes for development and industrial application.




Nontraditional Manufacturing Processes


Book Description

This book provides a convenient, single source of information on advanced machining, material forming, and joining processes. It describes available technologies that use tools, such as high velocity material jets, pulsed magnetic fields, light beams, electrochemical reactions, and more. Organized by type of process (mechanical, chemical, electrochemical, and thermal), the book discusses 31 important nontraditional processes and covers each process’s principles, equipment, capabilities, and operating parameters. The author includes a list of nontraditional manufacturing firms, nearly 250 figures that clearly illustrate the technologies, and numerous bibliographic citations for additional reading.




Nontraditional Manufacturing Processes


Book Description

This book provides a convenient, single source of information on advanced machining, material forming, and joining processes. It describes available technologies that use tools, such as high velocity material jets, pulsed magnetic fields, light beams, electrochemical reactions, and more. Organized by type of process (mechanical, chemical, electrochemical, and thermal), the book discusses 31 important nontraditional processes and covers each process’s principles, equipment, capabilities, and operating parameters. The author includes a list of nontraditional manufacturing firms, nearly 250 figures that clearly illustrate the technologies, and numerous bibliographic citations for additional reading.




Advanced Machining Processes


Book Description

Today’s stringent design requirements and difficult-to-machine materials such as tough super alloys, ceramics, and composites, have made traditional machining processes costly and obsolete. As a result, manufacturers and machine design engineers are turning to advance machining processes. These machining processes utilizes electrical, chemical, and optimal sources of energy to bind, form and cut materials. El-Hofy rigorously explains how each of these advanced machining process work, their machining system components, process variables and industrial applications, making this book the perfect guide for anyone designing, researching or converting to a more advance machining process.




Advanced Analysis of Nontraditional Machining


Book Description

Nontraditional machining utilizes thermal, chemical, electrical, mechanical and optimal sources of energy to bind, form and cut materials. Advanced Analysis of Nontraditional Machining explains in-depth how each of these advanced machining processes work, their machining system components, and process variables and industrial applications, thereby offering advanced knowledge and scientific insight. This book also documents the latest and frequently cited research results of a few key nonconventional machining processes for the most concerned topics in industrial applications, such as laser machining, electrical discharge machining, electropolishing of die and mold, and wafer processing for integrated circuit manufacturing.




Machine Learning Applications in Non-conventional Machining Processes


Book Description

"This book is a collection of research on the advancement of intelligent technology in industrial environments and its applications within the manufacturing field"--




Sustainable Machining


Book Description

This book provides an overview on current sustainable machining. Its chapters cover the concept in economic, social and environmental dimensions. It provides the reader with proper ways to handle several pollutants produced during the machining process. The book is useful on both undergraduate and postgraduate levels and it is of interest to all those working with manufacturing and machining technology.




Manufacturing Process Selection Handbook


Book Description

Manufacturing Process Selection Handbook provides engineers and designers with process knowledge and the essential technological and cost data to guide the selection of manufacturing processes early in the product development cycle. Building on content from the authors’ earlier introductory Process Selection guide, this expanded handbook begins with the challenges and benefits of identifying manufacturing processes in the design phase and appropriate strategies for process selection. The bulk of the book is then dedicated to concise coverage of different manufacturing processes, providing a quick reference guide for easy comparison and informed decision making. For each process examined, the book considers key factors driving selection decisions, including: Basic process descriptions with simple diagrams to illustrate Notes on material suitability Notes on available process variations Economic considerations such as costs and production rates Typical applications and product examples Notes on design aspects and quality issues Providing a quick and effective reference for the informed selection of manufacturing processes with suitable characteristics and capabilities, Manufacturing Process Selection Handbook is intended to quickly develop or refresh your experience of selecting optimal processes and costing design alternatives in the context of concurrent engineering. It is an ideal reference for those working in mechanical design across a variety of industries and a valuable learning resource for advanced students undertaking design modules and projects as part of broader engineering programs. Provides manufacturing process information maps (PRIMAs) provide detailed information on the characteristics and capabilities of 65 processes in a standard format Includes process capability charts detailing the processing tolerance ranges for key material types Offers detailed methods for estimating costs, both at the component and assembly level




Traditional Machining Technology


Book Description

Traditional Machining Technology describes the fundamentals, basic elements, and operations of general-purpose metal cutting and abrasive machine tools used for the production and grinding of cylindrical and flat surfaces by turning, drilling, and reaming; shaping and planing; and milling processes. Special-purpose machines and operations used for thread cutting, gear cutting, and broaching processes are included along with semiautomatic, automatic, NC, and CNC machine tools; operations, tooling, mechanisms, accessories, jigs and fixtures, and machine-tool dynamometry are discussed. The treatment throughout the book is aimed at motivating and challenging the reader to explore technologies and economically viable solutions regarding the optimum selection of machining operations for a given task. This book will be useful to professionals, students, and companies in the industrial, manufacturing, mechanical, materials, and production engineering fields.




Non-traditional Micromachining Processes


Book Description

This book presents a complete coverage of micromachining processes from their basic material removal phenomena to past and recent research carried by a number of researchers worldwide. Chapters on effective utilization of material resources, improved efficiency, reliability, durability, and cost effectiveness of the products are presented. This book provides the reader with new and recent developments in the field of micromachining and microfabrication of engineering materials.