Quaternion Algebras


Book Description

This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation are recapped throughout.




Note on Quadratic Forms in Characteristic 2


Book Description

It is proved that the pseudo-discriminant of a nondefective quadratic form over the field K with characteristic 2 is determined up to an element of the form L+L-squared. It is proved that left and right multiplications are proper similarities in octave algebras of characteristic 2.




The Algebraic and Geometric Theory of Quadratic Forms


Book Description

This book is a comprehensive study of the algebraic theory of quadratic forms, from classical theory to recent developments, including results and proofs that have never been published. The book is written from the viewpoint of algebraic geometry and includes the theory of quadratic forms over fields of characteristic two, with proofs that are characteristic independent whenever possible. For some results both classical and geometric proofs are given. Part I includes classical algebraic theory of quadratic and bilinear forms and answers many questions that have been raised in the early stages of the development of the theory. Assuming only a basic course in algebraic geometry, Part II presents the necessary additional topics from algebraic geometry including the theory of Chow groups, Chow motives, and Steenrod operations. These topics are used in Part III to develop a modern geometric theory of quadratic forms.




Specialization of Quadratic and Symmetric Bilinear Forms


Book Description

A Mathematician Said Who Can Quote Me a Theorem that’s True? For the ones that I Know Are Simply not So, When the Characteristic is Two! This pretty limerick ?rst came to my ears in May 1998 during a talk by T.Y. Lam 1 on ?eld invariants from the theory of quadratic forms. It is—poetic exaggeration allowed—a suitable motto for this monograph. What is it about? At the beginning of the seventies I drew up a specialization theoryofquadraticandsymmetricbilinear formsover ?elds[32].Let? : K? L?? be a place. Then one can assign a form? (?)toaform? over K in a meaningful way ? if? has “good reduction” with respect to? (see§1.1). The basic idea is to simply apply the place? to the coe?cients of?, which must therefore be in the valuation ring of?. The specialization theory of that time was satisfactory as long as the ?eld L, and therefore also K, had characteristic 2. It served me in the ?rst place as the foundation for a theory of generic splitting of quadratic forms [33], [34]. After a very modest beginning, this theory is now in full bloom. It became important for the understanding of quadratic forms over ?elds, as can be seen from the book [26]of Izhboldin–Kahn–Karpenko–Vishik for instance. One should note that there exists a theoryof(partial)genericsplittingofcentralsimplealgebrasandreductivealgebraic groups, parallel to the theory of generic splitting of quadratic forms (see [29] and the literature cited there).










Rational Quadratic Forms


Book Description

Exploration of quadratic forms over rational numbers and rational integers offers elementary introduction. Covers quadratic forms over local fields, forms with integral coefficients, reduction theory for definite forms, more. 1968 edition.







Algebraic and Arithmetic Theory of Quadratic Forms


Book Description

This proceedings volume contains papers presented at the International Conference on the algebraic and arithmetic theory of quadratic forms held in Talca (Chile). The modern theory of quadratic forms has connections with a broad spectrum of mathematical areas including number theory, geometry, and K-theory. This volume contains survey and research articles covering the range of connections among these topics. The survey articles bring readers up-to-date on research and open problems in representation theory of integral quadratic forms, the algebraic theory of finite square class fields, and developments in the theory of Witt groups of triangulated categories. The specialized articles present important developments in both the algebraic and arithmetic theory of quadratic forms, as well as connections to geometry and K-theory. The volume is suitable for graduate students and research mathematicians interested in various aspects of the theory of quadratic forms.