Notes on Set Theory


Book Description

What this book is about. The theory of sets is a vibrant, exciting math ematical theory, with its own basic notions, fundamental results and deep open problems, and with significant applications to other mathematical theories. At the same time, axiomatic set theory is often viewed as a foun dation ofmathematics: it is alleged that all mathematical objects are sets, and their properties can be derived from the relatively few and elegant axioms about sets. Nothing so simple-minded can be quite true, but there is little doubt that in standard, current mathematical practice, "making a notion precise" is essentially synonymous with "defining it in set theory. " Set theory is the official language of mathematics, just as mathematics is the official language of science. Like most authors of elementary, introductory books about sets, I have tried to do justice to both aspects of the subject. From straight set theory, these Notes cover the basic facts about "ab stract sets," including the Axiom of Choice, transfinite recursion, and car dinal and ordinal numbers. Somewhat less common is the inclusion of a chapter on "pointsets" which focuses on results of interest to analysts and introduces the reader to the Continuum Problem, central to set theory from the very beginning.




Notes on Set Theory


Book Description

What this book is about. The theory of sets is a vibrant, exciting math ematical theory, with its own basic notions, fundamental results and deep open problems, and with significant applications to other mathematical theories. At the same time, axiomatic set theory is often viewed as a foun dation ofmathematics: it is alleged that all mathematical objects are sets, and their properties can be derived from the relatively few and elegant axioms about sets. Nothing so simple-minded can be quite true, but there is little doubt that in standard, current mathematical practice, "making a notion precise" is essentially synonymous with "defining it in set theory. " Set theory is the official language of mathematics, just as mathematics is the official language of science. Like most authors of elementary, introductory books about sets, I have tried to do justice to both aspects of the subject. From straight set theory, these Notes cover the basic facts about "ab stract sets," including the Axiom of Choice, transfinite recursion, and car dinal and ordinal numbers. Somewhat less common is the inclusion of a chapter on "pointsets" which focuses on results of interest to analysts and introduces the reader to the Continuum Problem, central to set theory from the very beginning.




Notes on Logic and Set Theory


Book Description

A succinct introduction to mathematical logic and set theory, which together form the foundations for the rigorous development of mathematics. Suitable for all introductory mathematics undergraduates, Notes on Logic and Set Theory covers the basic concepts of logic: first-order logic, consistency, and the completeness theorem, before introducing the reader to the fundamentals of axiomatic set theory. Successive chapters examine the recursive functions, the axiom of choice, ordinal and cardinal arithmetic, and the incompleteness theorems. Dr. Johnstone has included numerous exercises designed to illustrate the key elements of the theory and to provide applications of basic logical concepts to other areas of mathematics.




A Book of Set Theory


Book Description

"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--




An Outline of Set Theory


Book Description

This book is designed for use in a one semester problem-oriented course in undergraduate set theory. The combination of level and format is somewhat unusual and deserves an explanation. Normally, problem courses are offered to graduate students or selected undergraduates. I have found, however, that the experience is equally valuable to ordinary mathematics majors. I use a recent modification of R. L. Moore's famous method developed in recent years by D. W. Cohen [1]. Briefly, in this new approach, projects are assigned to groups of students each week. With all the necessary assistance from the instructor, the groups complete their projects, carefully write a short paper for their classmates, and then, in the single weekly class meeting, lecture on their results. While the em phasis is on the student, the instructor is available at every stage to assure success in the research, to explain and critique mathematical prose, and to coach the groups in clear mathematical presentation. The subject matter of set theory is peculiarly appropriate to this style of course. For much of the book the objects of study are familiar and while the theorems are significant and often deep, it is the methods and ideas that are most important. The necessity of rea soning about numbers and sets forces students to come to grips with the nature of proof, logic, and mathematics. In their research they experience the same dilemmas and uncertainties that faced the pio neers.




Elements of Set Theory


Book Description

This is an introductory undergraduate textbook in set theory. In mathematics these days, essentially everything is a set. Some knowledge of set theory is necessary part of the background everyone needs for further study of mathematics. It is also possible to study set theory for its own interest--it is a subject with intruiging results anout simple objects. This book starts with material that nobody can do without. There is no end to what can be learned of set theory, but here is a beginning.




Set Theory and Its Philosophy


Book Description

A wonderful new book ... Potter has written the best philosophical introduction to set theory on the market - Timothy Bays, Notre Dame Philosophical Reviews.




Problems and Theorems in Classical Set Theory


Book Description

This volume contains a variety of problems from classical set theory and represents the first comprehensive collection of such problems. Many of these problems are also related to other fields of mathematics, including algebra, combinatorics, topology and real analysis. Rather than using drill exercises, most problems are challenging and require work, wit, and inspiration. They vary in difficulty, and are organized in such a way that earlier problems help in the solution of later ones. For many of the problems, the authors also trace the history of the problems and then provide proper reference at the end of the solution.




Introduction to the Theory of Sets


Book Description

This undergraduate text develops its subject through observations of the physical world, covering finite sets, cardinal numbers, infinite cardinals, and ordinals. Includes exercises with answers. 1958 edition.




An Introduction to Proofs with Set Theory


Book Description

This text is intended as an introduction to mathematical proofs for students. It is distilled from the lecture notes for a course focused on set theory subject matter as a means of teaching proofs. Chapter 1 contains an introduction and provides a brief summary of some background material students may be unfamiliar with. Chapters 2 and 3 introduce the basics of logic for students not yet familiar with these topics. Included is material on Boolean logic, propositions and predicates, logical operations, truth tables, tautologies and contradictions, rules of inference and logical arguments. Chapter 4 introduces mathematical proofs, including proof conventions, direct proofs, proof-by-contradiction, and proof-by-contraposition. Chapter 5 introduces the basics of naive set theory, including Venn diagrams and operations on sets. Chapter 6 introduces mathematical induction and recurrence relations. Chapter 7 introduces set-theoretic functions and covers injective, surjective, and bijective functions, as well as permutations. Chapter 8 covers the fundamental properties of the integers including primes, unique factorization, and Euclid's algorithm. Chapter 9 is an introduction to combinatorics; topics included are combinatorial proofs, binomial and multinomial coefficients, the Inclusion-Exclusion principle, and counting the number of surjective functions between finite sets. Chapter 10 introduces relations and covers equivalence relations and partial orders. Chapter 11 covers number bases, number systems, and operations. Chapter 12 covers cardinality, including basic results on countable and uncountable infinities, and introduces cardinal numbers. Chapter 13 expands on partial orders and introduces ordinal numbers. Chapter 14 examines the paradoxes of naive set theory and introduces and discusses axiomatic set theory. This chapter also includes Cantor's Paradox, Russel's Paradox, a discussion of axiomatic theories, an exposition on Zermelo‒Fraenkel Set Theory with the Axiom of Choice, and a brief explanation of Gödel's Incompleteness Theorems.