Advances in Aerogel Composites for Environmental Remediation


Book Description

Advances in Aerogel Composites for Environmental Remediation presents both contextual information about aerogels and details about their application in environmental remediation. A wide variety of aerogels are discussed, ranging from common to advanced and from natural to synthetic. By exploring ongoing research and developments in the environmental remediation technologies using aerogel and its composites, this book addresses common day-to-day environmental problems and presents solutions to the use of aerogel materials. The chapters discuss fabrication of various aerogel composites, along with their design and applications toward different environmental remediation technologies. Additionally, the properties and advantages of aerogels are compared and contrasted to those of traditional materials. Given the consistent increase in environmental pollution, there is an urgent need to explore new materials for advances in remediation technology. Advances in Aerogel Composites for Environmental Remediation brings researchers and practitioners in the fields of environmental remediation, environmental science, and engineering to the forefront of remediation technologies with a thorough breakdown of the benefits of and techniques relevant to aerogel composites. Covers basic properties, unique properties, and fabrication techniques of aerogels, from basic silica aerogels to present-day conventional aerogels Discusses most of the major environmental remediation techniques and the advantages of using aerogels for these remediation techniques in comparison to using traditional methods Presents future prospects for utilizing aerogels in modern day-to-day life and in the fabrication of tangible new products




Advanced Porous Biomaterials for Drug Delivery Applications


Book Description

Advanced Porous Biomaterials for Drug Delivery Applications probes cutting-edge progress in the application of advanced porous biomaterials in drug delivery fields. These biomaterials offer promise in improving upon the design, cost, and creation of potent novel drug delivery systems. The book focuses on two categories: nature engineered and synthetic advanced porous biomaterials, with a wide range of low-cost porous biomaterial-based systems that have been used for the delivery of diverse drugs through in vitro/in vivo approaches. Details how advanced porous biomaterial-assisted systems improve essential properties in drug delivery applications Explains how advanced porous biomaterials systems are being used and explored to improve overall performances of drug delivery systems in mitigating a variety of diseases Emphasizes major applications in drug delivery such as controlled release, cancer therapy, and targeted delivery, and with focus on oral, topical, and transdermal applications Focuses on both naturally available and synthetic low-cost advanced porous biomaterials and their role in enhancing important parameters in drug delivery applications Accessible to readers with bio and non-bio backgrounds This book is an ideal reference for academics, researchers, and industry professionals in the interdisciplinary fields of biomedicine and biomedical engineering, pharmaceuticals, materials science, and chemistry.




Conducting Polymers for Advanced Energy Applications


Book Description

This book details the use of conducting polymers and their composites in supercapacitors, batteries, photovoltaics, and fuel cells, nearly covering the entire spectrum of energy area under one title. Conducting Polymers for Advanced Energy Applications covers a range of advanced materials based on conducting polymers, the fundamentals, and the chemistry behind these materials for energy applications. FEATURES Covers materials, chemistry, various synthesis approaches, and the properties of conducting polymers and their composites Discusses commercialization and markets and elaborates on advanced applications Presents an overview and the advantages of using conducting polymers and their composites for advanced energy applications Describes a variety of nanocomposites, including metal oxides, chalcogenides, graphene, and materials beyond graphene Offers the fundamentals of electrochemical behavior This book provides a new direction for scientists, researchers, and students in materials science and polymer chemistry who seek to better understand the chemistry behind conducting polymers and improve their performance for use in advanced energy applications.




Fabrication and Functionalization of Advanced Tubular Nanofibers and their Applications


Book Description

Fabrication and Functionalization of Advanced Tubular Nanofibers and their Applications describes the synthesis, preparation and characterization of carbon-based tubular nanofibers and their applications in environmental protection and new energy sources. The book explores novel strategies for the preparation of carbon tubular nanofibers and explains how they have been used to great effect in a range of applications, including energy and healthcare. The processing-structure-property relationship in functional inorganic/organic materials is examined at the nano-level, explaining where interesting electronic, magnetic, optical, mechanical or catalytic and therapeutic properties are derived. Covering everything from the basics to their use in practice, including the synthetic procedure and characterization, this book is the perfect guide for anyone interested in the design of nanomaterials for advanced applications. Nanomaterial science is a relatively young and rapidly developing discipline that includes aspects of physics, chemistry and biology and is finding applications in some of mankind's greatest current challenges. - Describes how to produce superior tubular nanofiber performance in one or more characteristics - Addresses important advances in the synthesis, processing and surface modification of new materials - Explains innovative applications of tubular nanofibers in environmental and biotechnology applications




Advanced Functional Porous Materials


Book Description

This book presents synthesis, characterization, and applications of macroporous, mesoporous, nanoporous, hierarchical porous, porous metals, and porous ceramics. Special emphasis is given to the preparation of porous activated carbon materials and porous ionic liquid-derived materials for CO2 emissions mitigation. Additionally, a chapter includes the physical and mathematical modeling in porous media. Many analytical techniques for characterization are discussed in this book. Also, the biomedical and industrial applications of porous materials in adsorption, catalysis, biosensors, drug delivery, nanotechnology are described. The content helps solving fundamental and applied problems in porous materials with length scales varying from macro- to nano-level.




Advanced Materials for a Sustainable Environment


Book Description

This book summarizes recent and critical aspects of advanced materials for environmental protection and remediation. It explores the various development aspects related to environmental remediation, including design and development of novel and highly efficient materials, aimed at environmental sustainability. Synthesis of advanced materials with desirable physicochemical properties and applications is covered as well. Distributed across 13 chapters, the major topics covered include sensing and elimination of contaminants and hazardous materials via advanced materials along with hydrogen energy, biofuels, and CO2 capture technology. Discusses the development in design of synthesis process and materials with sustainable approach. Covers removal of biotic and abiotic wastes from the aqueous systems. Includes hydrogen energy and biofuels under green energy production. Explores removal of environmental (soil and air) contaminants with nanomaterials. Reviews advanced materials for environmental remediation in both liquid and gas phases.




Metal-Organic Framework Materials


Book Description

Metal-Organic Frameworks (MOFs) are crystalline compounds consisting of rigid organic molecules held together and organized by metal ions or clusters. Special interests in these materials arise from the fact that many are highly porous and can be used for storage of small molecules, for example H2 or CO2. Consequently, the materials are ideal candidates for a wide range of applications including gas storage, separation technologies and catalysis. Potential applications include the storage of hydrogen for fuel-cell cars, and the removal and storage of carbon dioxide in sustainable technical processes. MOFs offer the inorganic chemist and materials scientist a wide range of new synthetic possibilities and open the doors to new and exciting basic research. Metal-Organic Frameworks Materials provides a solid basis for the understanding of MOFs and insights into new inorganic materials structures and properties. The volume also reflects progress that has been made in recent years, presenting a wide range of new applications including state-of-the art developments in the promising technology for alternative fuels. The comprehensive volume investigates structures, symmetry, supramolecular chemistry, surface engineering, recognition, properties, and reactions. The content from this book will be added online to the Encyclopedia of Inorganic and Bioinorganic Chemistry: http://www.wileyonlinelibrary.com/ref/eibc




Introduction to Porous Materials


Book Description

The first comprehensive textbook on the timely and rapidly developing topic of inorganic porous materials This is the first textbook to completely cover a broad range of inorganic porous materials. It introduces the reader to the development of functional porous inorganic materials, from the synthetic zeolites in the 50’s, to today’s hybrid materials such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and related networks. It also provides the necessary background to understand how porous materials are organized, characterized, and applied in adsorption, catalysis, and many other domains. Additionally, the book explains characterization and application from the materials scientist viewpoint, giving the reader a practical approach on the characterization and application of the respective materials. Introduction to Inorganic Porous Materials begins by describing the basic concepts of porosity and the different types of pores, surfaces, and amorphous versus crystalline materials, before introducing readers to nature’s porous materials. It then goes on to cover everything from adsorption and catalysis to amorphous materials such as silica to inorganic carbons and Periodic Mesoporous Organosilicas (PMOs). It discusses the synthesis and applications of MOFs and the broad family of COFs. It concludes with a look at future prospects and emerging trends in the field. The only complete book of its kind to cover the wide variety of inorganic and hybrid porous materials A comprehensive reference and outstanding tool for any course on inorganic porous materials, heterogeneous catalysis, and adsorption Gives students and investigators the opportunity to learn about porous materials, how to characterize them, and understand how they can be applied in different fields Introduction to Inorganic Porous Materials is an excellent book for students and professionals of inorganic chemistry and materials science with an interest in porous materials, functional inorganic materials, heterogeneous catalysis and adsorption, and solid state characterization techniques.




Nanohybrids in Environmental & Biomedical Applications


Book Description

Heterostructured nanoparticles have the capability for a broad range of novel and enhanced properties, which leads to appealing biomedical and environmental applications. This timely new book addresses the design and preparation of multiphase nanomaterials with desired size, shape, phase composition, and crystallinity, as well as their current applications. It emphasizes key examples to motivate deeper studies, including nanomaterial-based hyperthermia treatment of cancer, nanohybrids for water purification, nanostructures used in the removal or detection of bioagents from waste water, and so on. Features Presents state of the art research on heterostructured nanomaterials, from their synthesis and physiochemical properties to current environmental and biological applications. Includes details on toxicity and risk assessment of multifunctional nanomaterials. Discusses recent developments and utilization in healthcare by leading experts. Introduces the main features of functionalization of nanomaterials in terms of desired size, shape, phase composition, surface functionalization/coating, toxicity, and geometry. Emphasizes practical applications in the environmental and biomedical sectors.




Adsorption by Powders and Porous Solids


Book Description

The declared objective of this book is to provide an introductory review of the various theoretical and practical aspects of adsorption by powders and porous solids with particular reference to materials of technological importance. The primary aim is to meet the needs of students and non-specialists who are new to surface science or who wish to use the advanced techniques now available for the determination of surface area, pore size and surface characterization. In addition, a critical account is given of recent work on the adsorptive properties of activated carbons, oxides, clays and zeolites. - Provides a comprehensive treatment of adsorption at both the gas/solid interface and the liquid/solid interface - Includes chapters dealing with experimental methodology and the interpretation of adsorption data obtained with porous oxides, carbons and zeolites - Techniques capture the importance of heterogeneous catalysis, chemical engineering and the production of pigments, cements, agrochemicals, and pharmaceuticals