Novel Photoactive Materials


Book Description

This book is a printed edition of the Special Issue Novel Photoactive Materials that was published in Materials




Novel Photoactive Materials


Book Description

Photoactivity represents the ability of a material, generally speaking a semiconductor, to become active when interacting with light. It can be declined in many ways, and several functionalities arising from this behavior of materials can be exploited, all leading to positive repercussions on our environment. There are several classes of effects of photoactivity, all of which have been deeply investigated in the last few decades, allowing to develop more and more efficient materials and devices. All of them share a common point, that is, the interaction of a material with light, although many different materials are taken into account depending on the effect desired--from elemental semiconductors like silicon, to more complex compounds like CdTe or GaAs, to metal oxides like TiO2 and ZnO. Given the broadness of the field, a huge number of works fall within this topic, and new areas of discovery are constantly explored. The special issue "Novel Photoactive Materials" has been proposed as a means to present recent developments in the field, and for this reason the articles included touch different aspects of photoactivity, from photocatalysis to photovoltaics to light emitting materials.




Photoactive Materials


Book Description

This book presents a collection of 13 original research articles that focus on the science of light-matter interaction. This area of science has been led to some the greatest accomplishments of the past 100 years, with the discovery of materials that perform useful operations by collecting light or generating light from an outside stimulus. These materials are at the center of a multitude of technologies that have permeated our daily life; every day we rely on quantum well lasers for telecommunication, organic light emitting diodes for our displays, complementary metal-oxide-semiconductors for our camera detectors, and of course a plethora of new photovoltaic cells that harvest sunlight to satisfy our energy needs. In this book, top-rated researchers present their latest findings in the field of nano-particles, plasmonics, semi-conductors, magneto-optics, and holography.




Preparation of Novel Photoactive Materials


Book Description

Photocatalysis is considered significant in this new energy era, because the inexhaustibly abundant, clean, and safe energy of the sun can be harnessed for sustainable, nonhazardous, and economically development of our society. In the research of photocatalysis, the current focus was held by the design and modification of photocatalyst. As one of the most promising photocatalysts, g-C3N4 has gained considerable attention for its eye-catching properties. It has been extensively explored in photocatalysis applications, such as water splitting, organic pollutant degradation, and CO2 reduction. Even so, it also has its own drawbacks which inhibit its further application. Inspired by that, this thesis will mainly present and discuss the process and achievement on the preparation of some novel photocatalysts and their photocatalysis performance. These materials were all synthesized via the alteration of classic g-C3N4 preparation method, like using different pre-compositions for initial supramolecular complex and functional group...




Chalcogenide-Based Nanomaterials as Photocatalysts


Book Description

Chalcogenide-Based Nanomaterials as Photocatalysts deals with the different types of chalcogenide-based photocatalytic reactions, covering the fundamental concepts of photocatalytic reactions involving chalcogenides for a range of energy and environmental applications. Sections focus on nanostructure control, synthesis methods, activity enhancement strategies, environmental applications, and perspectives of chalcogenide-based nanomaterials. The book offers guidelines for designing new chalcogenide-based nanoscale photocatalysts at low cost and high efficiency for efficient utilization of solar energy in the areas of energy production and environment remediation. Provides information on the development of novel chalcogenide-based nanomaterials Outlines the fundamentals of chalcogenides-based photocatalysis Includes techniques for heterogeneous catalysis based on chalcogenide-based nanomaterials







Nanomaterials and Polymer Nanocomposites


Book Description

Nanomaterials and Polymer Nanocomposites: Raw Materials to Applications brings together the most recent research in nanoparticles and polymer nanocomposites for a range of applications. The book's coverage is comprehensive, starting with synthesis techniques, then moving to characterization and applications of several different classes of nanomaterial and nanoparticle in nanocomposites. By presenting different nanomaterials, such as metal and metal oxides, clay and POSS, carbon nanotubes, cellulose and bio-based polymers in a structured manner, the book enables an efficient comparison of properties and capabilities for these advanced materials, making it relevant both for researchers in an academic environment and also industrial R&D. This book is particularly distinctive because it centers on the raw materials on which the nanocomposites are based, the biological properties of the range of materials discussed, and the environmental and economic considerations of different polymer systems. Presents a thorough, up-to-date review of the latest advances and developments in the field of nanomaterials and polymer nanocomposites, with a particular focus on raw materials Includes comprehensive coverage from historical backgrounds, synthesis techniques, characterization, and a detailed look at new and emerging applications for polymer nanocomposites Provides a range of different material classes, including metal and metal oxides, biopolymers, graphene and cellulose, among others




Nanozymes: Next Wave of Artificial Enzymes


Book Description

This book describes the fundamental concepts, the latest developments and the outlook of the field of nanozymes (i.e., the catalytic nanomaterials with enzymatic characteristics). As one of today’s most exciting fields, nanozyme research lies at the interface of chemistry, biology, materials science and nanotechnology. Each of the book’s six chapters explores advances in nanozymes. Following an introduction to the rise of nanozymes research in the course of research on natural enzymes and artificial enzymes in Chapter 1, Chapters 2 through 5 discuss different nanomaterials used to mimic various natural enzymes, from carbon-based and metal-based nanomaterials to metal oxide-based nanomaterials and other nanomaterials. In each of these chapters, the nanomaterials’ enzyme mimetic activities, catalytic mechanisms and key applications are covered. In closing, Chapter 6 addresses the current challenges and outlines further directions for nanozymes. Presenting extensive information on nanozymes and supplemented with a wealth of color illustrations and tables, the book offers an ideal guide for readers from disparate areas, including analytical chemistry, materials science, nanoscience and nanotechnology, biomedical and clinical engineering, environmental science and engineering, green chemistry, and novel catalysis.




Novel Carbon Materials and Composites


Book Description

Connects knowledge about synthesis, properties, and applications of novel carbon materials and carbon-based composites This book provides readers with new knowledge on the synthesis, properties, and applications of novel carbon materials and carbon-based composites, including thin films of silicon carbide, carbon nitrite, and their related composites. It examines the direct bottom-up synthesis of the carbon-based composite systems and their potential applications, and discusses the growth mechanism of the composite structures. It features applications that range from mechanical, electronic, chemical, biochemical, medical, and environmental to functional devices. Novel Carbon Materials and Composites: Synthesis, Properties and Applications covers an overview of the synthesis, properties, and applications of novel carbon materials and composites. Especially, it covers everything from chemical vapor deposition of silicon carbide films and their electrochemical applications to applications of various novel carbon materials for the construction of supercapacitors to chemical vapor deposition of diamond/silicon carbide composite films to the covering and fabrication processes of nanodot composites. Looks at the recent progress and achievements in the fields of novel carbon materials and composites, including thin films of silicon carbide, carbon nitrite, and their related composites Discusses the many applications of carbon materials and composites Focuses on the hot topic of the fabrication of carbon-based composite materials and their abilities to extend the potential applications of carbon materials Published as a title in the new Wiley book series Nanocarbon Chemistry and Interfaces. Novel Carbon Materials and Composites: Synthesis, Properties and Applications is an important book for academic researchers and industrial scientists working in the fabrication and application of carbon materials and carbon-based composite materials and related fields.