Novel Proteomic Approaches to Characterize Endogenous Membrane Proteins


Book Description

Biological information flows as DNA is transcribed into mRNA and then translated into proteins. However, sequence variations from mutations and alternative splicing events combined with post-translational modification (PTMs) of proteins result in a diversity of protein forms (referred to as proteoforms) that can arise from a single gene. Mass spectrometry (MS)-based proteomics provides an unprecedented opportunity to understand the role of proteoforms in health and disease; however, many challenges remain. For example, despite their importance as drug targets (>50% of current drugs), membrane proteins are traditionally underrepresented using MS-based proteomics because of their lower expression level, hydrophobicity, and lack of established protocols. To address these challenges, I developed a novel photocleavable surfactant, Azo, which can effectively solubilize proteins and is compatible with MS analysis (Chapter 2). We demonstrated Azo-aided top-down proteomics (the analysis of intact proteins by MS) enabled the solubilization of important membrane proteins from biological samples, including heart tissues, for comprehensive characterization of their proteoforms. Moreover, Azo is simple to synthesize and can be used as a surfactant in polyacrylamide gel electrophoresis. We next incorporated the surfactant technology to facilitate high-throughput bottom-up proteomics (the analysis of digested proteins by MS) for more extensive proteome coverage and protein expression quantification. Furthermore, we established simple, high-throughput membrane and extracellular matrix proteomic methods using Azo (Chapter 3-4). Combining Azo-aided bottom-up and top-down proteomics, we established a powerful integrated strategy to extensively characterize proteins from biological samples. Finally, a novel membrane protein enrichment and multidimensional liquid chromatography separation strategy was developed to further expand the scope of MS-based top-down proteomics for characterizing the membrane proteoform landscape (Chapter 4). Future development and applications of MS-based approaches for the characterization of membrane proteoforms are discussed in Chapter 5.




Proteome Characterization and Proteomics


Book Description

The content of this volume is designed to reach a wide audience, including those involved with relevant technologies such as electrophoresis and mass spectrometry, to those interested in how proteomics can benefit research. A wide range of techniques are discussed, each specifically designed to address different needs in proteomic analysis. The concluding chapter discusses the important issue related to handling large amounts of data accumulated in proteomic studies. Discusses proteomics in the postgenomic age Includes various strategies for quantitative proteomics Covers the role of MS in structural functional proteomics and proteomics in drug discovery and bioinformatics




Membrane Proteomics


Book Description

The membranes surrounding cells and organelles constitute their interface with the local environment. The functions of membrane proteins include cell/cell and cell/extracellular matrix recognition, the reception and transduction of extracellular signals, and the tra- port of proteins, solutes and water molecules. Abnormal membrane protein expression has profound biological effects and may, for example, underlie phenotypic and functional differences between normal and tumour cells. Moreover the accessibility, particularly of plasma proteins traversing the plasma membrane of cells, makes them of particular ut- ity to the therapeutic intervention in disease. Indeed, it is estimated that of all currently licensed pharmaceuticals, approximately 70% target proteins resident in the plasma m- brane. In theory, unbiased technologies such as proteomics have the power to de?ne patterns of membrane protein expression characteristic of distinct states of cellular development, differentiation or disease, and thereby identify novel markers of, or targets for intervention in, disease. However, although about 25% of open reading frames in fully sequenced genomes are estimated to encode integral membrane proteins, global analysis of membrane protein expression has proved problematic. Membrane protein analysis poses unique challenges at the level of extraction, solubilization, and separation in particular, and to a lesser extent of identi?cation and quantitation. These challenges have, however, fostered creativity, in- vation, and technical advances, many of which are brought together in Membrane P- teomics.







Subcellular Proteomics


Book Description

This volume summarizes the new developments that made subcellular proteomics a rapidly expanding area. It examines the different levels of subcellular organization and their specific methodologies. In addition, the book includes coverage of systems biology that deals with the integration of the data derived from these different levels to produce a synthetic description of the cell as a system.




Modern Proteomics – Sample Preparation, Analysis and Practical Applications


Book Description

This volume serves as a proteomics reference manual, describing experimental design and execution. The book also shows a large number of examples as to what can be achieved using proteomics techniques. As a relatively young area of scientific research, the breadth and depth of the current state of the art in proteomics might not be obvious to all potential users. There are various books and review articles that cover certain aspects of proteomics but they often lack technical details. Subject specific literature also lacks the broad overviews that are needed to design an experiment in which all steps are compatible and coherent. The objective of this book was to create a proteomics manual to provide scientists who are not experts in the field with an overview of: 1. The types of samples can be analyzed by mass spectrometry for proteomics analysis. 2. Ways to convert biological or ecological samples to analytes ready for mass spectral analysis. 3. Ways to reduce the complexity of the proteome to achieve better coverage of the constituent proteins. 4. How various mass spectrometers work and different ways they can be used for proteomics analysis 5. The various platforms that are available for proteomics data analysis 6. The various applications of proteomics technologies in biological and medical sciences This book should appeal to anyone with an interest in proteomics technologies, proteomics related bioinformatics and proteomics data generation and interpretation. With the broad setup and chapters written by experts in the field, there is information that is valuable for students as well as for researchers who are looking for a hands on introduction into the strengths, weaknesses and opportunities of proteomics.




Poly(ADP-Ribosyl)ation


Book Description

This is the most comprehensive, up-to-date reference on this post-translational modification of proteins, which is intimately linked with DNA repair, maintenance of genomic stability, transcriptional regulation, cell death and a variety of other cellular phenomena as well as with a variety of pathophysiological conditions, including ischemia-reperfusion damage, Parkinson’s disease, Type I diabetes mellitus, hemorrhagic and septic shock and other inflammatory conditions. Richly illustrated, it offers 19 chapters written by international experts.




Multidimensional Liquid Chromatography


Book Description

Multidimensional Liquid Chromatography (MDLC) is a very powerful separation technique for analyzing exceptionally complex samples in one step. This authoritative reference presents a number of recent contributions that help define the current art and science of MDLC. Topics covered include instrumentation, theory, methods development, and applications of MDLC in the life sciences and in industrial chemistry. With the information to help you perform very difficult separations of complex samples, this reference includes chapters contributed by leading experts or teams of experts.




Peptidomics


Book Description

The definitive guide to peptidomics- a hands-on lab reference The first truly comprehensive book about peptidomics for protein and peptide analysis, this reference provides a detailed description of the hows and whys of peptidomics and how the techniques have evolved. With chapters contributed by leading experts, it covers naturally occurring peptides, peptidomics methods and new developments, and the peptidomics approach to biomarker discovery. Explaining both the principles and the applications, Peptidomics: Methods and Applications: * Features examples of applications in diverse fields, including pharmaceutical science, toxicity biomarkers, and neuroscience * Details the successful peptidomic analyses of biological material ranging from plants to mammals * Describes a cross section of analytical techniques, including traditional methodologies, emerging trends, and new techniques for high throughput approaches An enlightening reference for experienced professionals, this book is sufficiently detailed to serve as a step-by-step guide for beginning researchers and an excellent resource for students taking biotechnology and proteomics courses. It is an invaluable reference for protein chemists and biochemists, professionals and researchers in drug and biopharmaceutical development, analytical and bioanalytical chemists, toxicologists, and others.




Handbook of In Vivo Chemistry in Mice


Book Description

Provides timely, comprehensive coverage of in vivo chemical reactions within live animals This handbook summarizes the interdisciplinary expertise of both chemists and biologists performing in vivo chemical reactions within live animals. By comparing and contrasting currently available chemical and biological techniques, it serves not just as a collection of the pioneering work done in animal-based studies, but also as a technical guide to help readers decide which tools are suitable and best for their experimental needs. The Handbook of In Vivo Chemistry in Mice: From Lab to Living System introduces readers to general information about live animal experiments and detection methods commonly used for these animal models. It focuses on chemistry-based techniques to develop selective in vivo targeting methodologies, as well as strategies for in vivo chemistry and drug release. Topics include: currently available mouse models; biocompatible fluorophores; radionuclides for radiodiagnosis/radiotherapy; live animal imaging techniques such as positron emission tomography (PET) imaging; magnetic resonance imaging (MRI); ultrasound imaging; hybrid imaging; biocompatible chemical reactions; ligand-directed nucleophilic substitution chemistry; biorthogonal prodrug release strategies; and various selective targeting strategies for live animals. -Completely covers current techniques of in vivo chemistry performed in live animals -Describes general information about commonly used live animal experiments and detection methods -Focuses on chemistry-based techniques to develop selective in vivo targeting methodologies, as well as strategies for in vivo chemistry and drug release -Places emphasis on material properties required for the development of appropriate compounds to be used for imaging and therapeutic purposes in preclinical applications Handbook of In Vivo Chemistry in Mice: From Lab to Living System will be of great interest to pharmaceutical chemists, life scientists, and organic chemists. It will also appeal to those working in the pharmaceutical and biotechnology industries.