Novel Water Treatment and Separation Methods


Book Description

Due to increasing demand for potable and irrigation water, new scientific research is being conducted to deal with wastewater from a variety of sources. Novel Water Treatment and Separation Methods: Simulation of Chemical Processes presents a selection of research related to applications of chemical processes for wastewater treatment, separation techniques, and modeling and simulation of chemical processes. Among the many topics are: degradation of herbicide removal of anionic dye efficient sun-light driven photocatalysis removal of copper and iron using green activated carbon defluoridation of drinking water removal of calcium and magnesium from wastewater using ion exchange resins degradation of vegetable oil refinery wastewater novel separation techniques, including microwave-assisted extraction and more The volume presents selected examples in wastewater treatment, highlighting some recent examples of processes such as photocatalytic degradation, emulsion liquid membrane, novel photocatalyst for degradation of various pollutants, and adsorption of heavy metals. The book goes on to explore some novel separation techniques, such as microwave-assisted extraction, anhydrous ethanol through molecular sieve dehydration, batch extraction from leaves of Syzygium cumini (known as jambul, jambolan, jamblang or jamun), and reactive extraction. These novel separation techniques have proved be advantageous over conventional methods. The volume also looks at modeling and simulation of chemical processes, including chapters on flow characteristics of novel solid-liquid multistage circulating fluidized bed, mathematical modeling and simulation of gasketed plate heat exchangers, optimization of the adsorption capacity of prepared activated carbon, and modeling of ethanol/water separation by pervaporation, along with topics on simulation using CHEMCAD software. The diverse chapters share and encourage new ideas, methods, and applications in ongoing advances in this growing area of chemical engineering and technology. It will be a valuable resource for researchers and faculty and industrialists as well as for students.




Industrial Water Treatment Process Technology


Book Description

Industrial Water Treatment Process Technology begins with a brief overview of the challenges in water resource management, covering issues of plenty and scarcity-spatial variation, as well as water quality standards. In this book, the author includes a clear and rigorous exposition of the various water resource management approaches such as: separation and purification (end of discharge pipe), zero discharge approach (green process development), flow management approach, and preservation and control approach. This coverage is followed by deeper discussion of individual technologies and their applications. - Covers water treatment approaches including: separation and purification—end of discharge pipe; zero discharge approach; flow management approach; and preservation and control approach - Discusses water treatment process selection, trouble shooting, design, operation, and physico-chemical and treatment - Discusses industry-specific water treatment processes




Boron Separation Processes


Book Description

The impending crisis posed by water stress and poor sanitation represents one of greatest human challenges for the 21st century, and membrane technology has emerged as a serious contender to confront the crisis. Yet, whilst there are countless texts on wastewater treatment and on membrane technologies, none address the boron problem and separation processes for boron elimination. Boron Separation Processes fills this gap and provides a unique and single source that highlights the growing and competitive importance of these processes. For the first time, the reader is able to see in one reference work the state-of-the-art research in this rapidly growing field. The book focuses on four main areas: - Effect of boron on humans and plants - Separation of boron by ion exchange and adsorption processes - Separation of boron by membrane processes - Simulation and optimization studies for boron separation - Provides in one source a state-of-the-art overview of this compelling area - Reviews the environmental impact of boron before introducing emerging boron separation processes - Includes simulation and optimization studies for boron separation processes - Describes boron separation processes applicable to specific sources, such as seawater, geothermal water and wastewater




Novel Water Treatment and Separation Methods


Book Description

"Due to increasing demand for potable and irrigation water, new scientific research is being conducted to deal with wastewater from a variety of sources. Novel Water Treatment and Separation Methods: Simulation of Chemical Processes presents a selection of research related to applications of chemical processes for wastewater treatment, separation techniques, and modeling and simulation of chemical processes. Among the many topics are: degradation of herbicideremoval of anionic dyeefficient sun-light driven photocatalysisremoval of copper and iron using green activated carbondefluoridation of drinking waterremoval of calcium and magnesium from wastewater using ion exchange resinsdegradation of vegetable oil refinery wastewaternovel separation techniques, including microwave-assisted extraction and moreThe volume presents selected examples in wastewater treatment, highlighting some recent examples of processes such as photocatalytic degradation, emulsion liquid membrane, novel photocatalyst for degradation of various pollutants, and adsorption of heavy metals. The book goes on to explore some novel separation techniques, such as microwave-assisted extraction, anhydrous ethanol through molecular sieve dehydration, batch extraction from leaves of Syzygium cumini (known as jambul, jambolan, jamblang or jamun), and reactive extraction. These novel separation techniques have proved be advantageous over conventional methods. The volume also looks at modeling and simulation of chemical processes, including chapters on flow characteristics of novel solid-liquid multistage circulating fluidized bed, mathematical modeling and simulation of gasketed plate heat exchangers, optimization of the adsorption capacity of prepared activated carbon, and modeling of ethanol/water separation by pervaporation, along with topics on simulation using CHEMCAD software. The diverse chapters share and encourage new ideas, methods, and applications in ongoing advances in this growing area of chemical engineering and technology. It will be a valuable resource for researchers and faculty and industrialists as well as for students."--Provided by publisher.




Wastewater Treatment


Book Description

Emphasizing new technologies that produce clean water and energy from the wastewater treatment process, this book presents recent advancements in wastewater treatment by various technologies such as chemical methods, biochemical methods, membrane separation techniques, and nanotechnology. It addresses sustainable water reclamation, biomembrane treatment processes, advanced oxidation processes, and applications of nanotechnology for wastewater treatment. It also includes integrated cost-based design methodologies. Equations, figures, photographs and tables are included within the chapters to aid reader comprehension. Case studies and examples are included as well.




Physical and Chemical Separation in Water and Wastewater Treatment


Book Description

Based upon half a century of research by the authors, Physical and Chemical Separation in Water and Wastewater Treatment addresses the whole water cycle spectrum, from global hydrological cycle, urban-regional metabolic cycle to individual living and production cycle, with respect to quality control technology based on fundamental science and theories. For every treatment process, basic scientific and environmental physical and chemical natures are explained with respect to those of water and its impurities. Health danger and risks for human beings are also covered. The authors define water qualities on a “Water Quality Matrix” composed of 35 elements. The vertical axis (row), has individual 7digit impurity size from 10-10m (water molecule 3?) to 10-3m (0.1mm sand grains) and in the horizontal axis(column) there are 5 categories of surrogate chemical and biochemical quality indices. The same 35 element matrix is used to correspond with several typical water quality treatments, unit-operation/unit-process, with a suitable characteristic grouping of the elements. The authors then present “the Water Quality Conversion Matrix” or “Water Quality Treatment Matrix”. With respect to typical treatment processes, the basic concept and scientific background are explained and the background of the technologies is clarified. Mechanisms of the process are explained and a kinetic process is formulated. The kinetics are experimentally verified quantitatively with important equilibrium and rate constants. Based on the authors’ research, various new treatment technologies are proposed with high efficiency, high capacity and less energy, and with steady operation ability. This comprehensive reference book is intended for undergraduate and graduate students, and also serves as a guide book for practical engineers and industry and university researchers.




Water Purification


Book Description

Water Purification, a volume in the Nanotechnology in the Food Industry series, provides an in-depth review of the current technologies and emerging application of nanotechnology in drinking water purification, also presenting an overview of the common drinking water contaminants, such as heavy metals, organics, microorganisms, pharmaceuticals, and their occurrences in drinking water sources. As the global water crisis has motivated the industry to look for alternative water supplies, nanotechnology presents significant potential for utilizing previously unacceptable water sources. This books explores the practical methodologies for transforming water using nanotechnologies, and is a comprehensive reference to a wide audience of food science research professionals, professors, and students who are doing research in this field. - Includes the most up-to-date information on nanotechnology applications and research methods for water purification and treatment - Presents applications of nanotechnology and engineered nanomaterials in drinking water purification to improve efficiency and reduce cost - Provides water purification research methods that are important to water quality, including precipitation, adsorption, membrane separation, and ion exchange - Covers the potential risks of nanotechnology, such as the toxicological effects of engineered nanomaterials in water and how to minimize risks based on research studies




Handbook of Water and Wastewater Treatment Technologies


Book Description

An Overview of Water and Wastewater; What Filtration Is All About; Chemical Additives that Enhance Filtration; Selecting the Right Filter Media; What Pressure- and Cake-Filtration Are All; Cartridge and Other Filters Worth Mentioning; What Sand Filtration is All About; Sedimentation, Clarification, Flotation, and Membrane Separation Technologies; Ion Exchange and Carbon Adsorption; Water Sterilization Technologies; Treating the Sludge; Glossary; Index.




Advanced Water Treatment


Book Description

Approx.372 pagesApprox.372 pages




Advances in Water Purification Techniques


Book Description

Advances in Water Purification Techniques: Meeting the Needs of Developed and Developing Countries provides a variety of approaches to water purification that can help assist readers with their research and applications. Water contamination problems occur frequently worldwide, hence the most updated knowledge on water purification systems can be helpful in employing the right type of filter or other mechanism of decontamination. The problems with arsenic contamination of water in Bangladesh and the lead problem in Flint, Michigan remind us of the need to monitor water pollution rigorously, from both point and non-point sources. - Provides a valuable resource on how to solve water contamination problems or develop new approaches to water purification - Presents advanced methods for monitoring water contamination - Describes various approaches to water purification - Encourages new developments in water purification techniques - Includes methods for assessing and monitoring environmental contaminants - Covers recent advancement in molecular techniques