Novel Wearable Antennas for Communication and Medical Systems


Book Description

Wearable antennas are meant to be incorporated as part of clothing or placed close to the body. Wearable antennas can be used in countless communication applications including tracking and navigation, medical applications, imaging and detection, RFID, mobile computing and public safety. The book "Novel Wearable Antennas for Communication and Medical Systems" discusses the challenges and technology to develop compact, efficient, wearable antennas. The book begins by presenting elementary communication, electromagnetics and antenna topics needed for engineers and students that do not have a background in design, principles, and features of antennas, printed antennas, wearable antennas, and compact antennas for communication and medical applications. Throughout the book each chapter also covers sufficient mathematical details, physical details and explanations to enable the reader to follow and understand the topics presented. New topics and design methods in the area of wearable antennas, metamaterial antennas, active printed antennas and fractal antennas for communication and medical systems are presented and discussed throughout the book. The book presents computed and measured results in the vicinity of the human body. The book also covers topics such as RF measurement techniques, measurement setups and design considerations. The antennas developed and analyzed in this book were designed and optimized by using 3D full-wave electromagnetics software.




Antennas and Propagation for Body-Centric Wireless Communications, Second Edition


Book Description

Now in a newly updated and revised edition, this timely resource provides you with complete and current details on the theory, design, and applications of wireless antennas for on-body electronic systems. The Second Edition offers readers brand new material on advances in physical phantom design and production, recent developments in simulation methods and numerical phantoms, descriptions of methods for simulation of moving bodies, and the use of the body as a transmission channel. You also find a completely revised chapter on channel characterization and antenna design at microwave frequencies. This cutting-edge volume brings you the state-of-the-art in existing applications like Bluetooth headsets together with detailed treatment of techniques, tools, and challenges in developing on-body antennas for an array of medical, emergency response, law enforcement, personal entertainment, and military applications on the horizon. The book briefs you on energy propagation around and into the body and how to estimate performance of on-body wireless links, and then dives into the nuts-and-bolts of designing antenna systems that deliver the goods. It covers on-body communication channels at microwave frequency bands and at low frequency bands, as well as ultra wideband systems for WPANs and WBANs. You get details on body-centric UWB antennas and channels, as well as advances in wearable mobile, EBG, and smart fabricù antennas for cellular and WLAN communications. Chapters on telemedicine applications, such as remote diagnoses, and implantable medical devices cover crucial propagation issues and other obstacles that need to be addressed. Rounding out the coverage is a section on antenna design for body-sensor networks and their emerging military and space applications. Packed with hands-on guidance from noted experts, this volume will be indispensable for your efforts in designing and improving body-centric communication systems.




Emerging Materials and Advanced Designs for Wearable Antennas


Book Description

Bendable wearable materials like conductive strands, fluid metallic mixes, and polymer in paper are generally utilized as a part of the current adaptable electronic gadgets. Extra necessities are implemented in wearable applications. Characteristic elastic, for example, is an appealing exchange adaptable material that is biocompatible and offers high conductivity, low lost, simplicity to make, and most importantly, it is water/climate safe and condition amicable. The wearable antenna is one of the key components to establish body area network (BAN) for wireless communication, which is why it has become such an important part of antenna research. Wearable antennas are being applied successfully in various parts of life such as health monitoring, physical training, navigation, RFID, medicine, military, and more. Emerging Materials and Advanced Designs for Wearable Antennas explores how wearable antenna technology is being employed to enhance the quality of life in various industries. The technologies implemented and success of these antenna technologies is essential in the emerging field of wearable computing and is discussed in detail within the contents of this book. While covering essential topics such as the optimization of antenna material, improvement in flexible antenna performance, synthesis and design aspects of antennas, and transmission and receiving of the bendable antenna, this book is ideal for the military field, scientists, the medical field, practitioners, stakeholders, researchers, academicians, and students looking for the most advanced and updated research on the technology and implementation of wearable antennas spanning multiple industries.




Advanced Radio Frequency Antennas for Modern Communication and Medical Systems


Book Description

The main objective of this book is to present novel radio frequency (RF) antennas for 5G, IOT, and medical applications. The book is divided into four sections that present the main topics of radio frequency antennas. The rapid growth in development of cellular wireless communication systems over the last twenty years has resulted in most of world population owning smartphones, smart watches, I-pads, and other RF communication devices. Efficient compact wideband antennas are crucial in RF communication devices. This book presents information on planar antennas, cavity antennas, Vivaldi antennas, phased arrays, MIMO antennas, beamforming phased array reconfigurable Pabry-Perot cavity antennas, and time modulated linear array.




Design and Optimization of Sensors and Antennas for Wearable Devices: Emerging Research and Opportunities


Book Description

Wearable continuous monitoring systems are necessary in risky environments such as mining and diving and are especially important in the medical monitoring of patients both in medical facilities and at home. All these applications of monitoring with data transmission functions can be achieved by using wearable antennas. Recently, possibilities of connecting completely independent appliances with textiles have emerged. However, full success will be achieved only when antennas and all related components are entirely converted into 100% textile materials. Design and Optimization of Sensors and Antennas for Wearable Devices: Emerging Research and Opportunities provides innovative insights on the development of adaptable materials and textile antennas that can be used in the construction of wearable devices that are biocompatible and offer high conductivity, low cost, simplistic manufacturing, are comfortable for the wearer, and are water/climate safe and condition amicable. The content within this publication examines data transmission, wearable computing, and medical applications. It is designed for engineers, manufacturers, researchers, academicians, and scientists who are interested in the development of wearable technologies.




Wearable Systems and Antennas Technologies for 5G, IOT and Medical Systems


Book Description

Due to progress in the development of communication systems, it is now possible to develop low-cost wearable communication systems. A wearable antenna is meant to be a part of the clothing or close to the body and used for communication purposes, which include tracking and navigation, mobile computing and public safety. Examples include smartwatches (with integrated Bluetooth antennas), glasses (such as Google Glass with Wi-Fi and GPS antennas), GoPro action cameras (with Wi-Fi and Bluetooth antennas), etc. They are increasingly common in consumer electronics and for healthcare and medical applications. However, the development of compact, efficient wearable antennas is one of the major challenges in the development of wearable communication and medical systems. Technologies such as printed compact antennas and miniaturization techniques have been developed to create efficient, small wearable antennas which are the main objective of this book. Each chapter covers enough mathematical detail and explanations to enable electrical, electromagnetic and biomedical engineers and students and scientists from all areas to follow and understand the topics presented. New topics and design methods are presented for the first time in the area of wearable antennas, metamaterial antennas and fractal antennas. The book covers wearable antennas, RF measurements techniques and measured results in the vicinity of the human body, setups and design considerations. The wearable antennas and devices presented in this book were analyzed by using HFSS and ADS 3D full-wave electromagnetics software. Explores wearable medical systems and antennas Explains the design and development of wearable communication systems Explores wearable reconfigurable antennas for communication and medical applications Discusses new types of metamaterial antennas and artificial magnetic conductors (AMC) Reviews textile antennas Dr. Albert Sabban holds a PhD in Electrical Engineering from the University of Colorado at Boulder, USA (1991), and an MBA from the Faculty of Management, Haifa University, Israel (2005). He is currently a Senior Lecturer and researcher at the Department of Electrical and Electronic Engineering at Kinneret and Ort Braude Engineering Colleges.




Wearable Antennas and Body Centric Communication


Book Description

This book presents state-of-the-art technologies, trends and applications with a focus on the healthcare domain for ultra-wideband (3.1–10.6 GHz) and 60 GHz (57–66 GHz) wireless communication systems. Due to various key features such as miniaturized antenna design, low power, high data rate, less effects on the human body, relatively less crowded spectrum, these technologies are becoming popular in various fields of biomedical applications and day-to-day life. The book highlights various aspects of these technologies related to body-centric communication, including antenna design requirements, channel modeling and characterization for WBANs, current fabrication and antenna design strategies for textile, flexible and implanted antennas. Apart from the general requirements and study related to these frequency bands, various application specific topics such as localization and tracking, physical activity recognition and assessment, vital sign monitoring and medical imaging are covered in detail. The book concludes with the glimpses of future aspects of the UWB and 60 GHz technology which includes IoT for healthcare and smart living, novel antenna materials and application of machine learning algorithms for overall performance enhancement.




Wearable and Neuronic Antennas for Medical and Wireless Applications


Book Description

WEARABLE AND NEURONIC ANTENNAS FOR MEDICAL AND WIRELESS APPLICATIONS This new volume in this exciting new series, written and edited by a group of international experts in the field, covers the latest advances and challenges in wearable and neuronic antennas for medical and wireless applications. Antenna development and engineering is changing at a rapid pace, and it is incredibly important that engineers, scientists, and students in the field have a valuable reference work to consult. Students are able to use this book as a learning tool, and professors and industrial short courses are able to use it as a textbook. Covering all of the advances and developments of wearable and neuronic antennas for medical and wireless applications, this outstanding new volume offers information not available anywhere else in any other format. Covering new research and development of antenna designs never seen before, this volume, written and edited by a team of experts in the field, breaks new ground, offering new solutions to engineering and scientific problems to experts in the field, while providing the full theoretical and conceptual background for the practical applications. Whether for the veteran engineer or scientist, the student, or a manager or other technician working in the field, this volume is a must-have for any library.




Advances in Green Electronics Technologies in 2023


Book Description

Green computing involves developing, designing, engineering, producing, using, and disposing of computing modules and devices to reduce environmental hazards and pollution. Green computing technologies are crucial for protecting the planet from environmental hazards and pollution. This book presents new subjects and innovations in green computing technologies and in green computing and electronics industries. Chapters address such topics as green wearable sensors, variable renewable energy, managing energy consumption using the Internet of Things (IoT) and big data, using forest waste to produce biofuel and biodiesel, green computing in ophthalmological practice, and much more.




Innovation in Wearable and Flexible Antennas


Book Description

This book deals with the design, numerical simulation, state of the art fabrication processes and methods, qualitative and quantitative tests, and measurement techniques of wearable and flexible antennas of different topologies, such as: Planar Inverted F, Printed Monopoles, Micropoles and Microstrips. Novel trends, materials, and fabrication and measurement techniques used in this vital field of antenna systems are also discussed. To the best of the editor’s knowledge, at the time of publication, there are no published books targeting the vital topic of flexible antennas specifically and/or serving as a complete reference. There are only few books on wearable antennas that deal with specific applications and this has initiated a motivation to propose a book that would serve as a complete technical reference of the addressed technology. This book can serve as a reference source for Research and Development scientists, RF and antenna engineers working in this vital field; moreover, it could be used as a text book for Antenna Theory and Advanced Antennas courses which are mainly offered for graduate students.