RNA Metabolism in Mitochondria


Book Description

This volume focuses on mitochondrial RNA metabolism, emphasizing recent discoveries and technological advances in this fast moving area that increase our understanding of mitochondrial gene function. Topics addressed include the interplay of mitochondria with the nucleus and cytosol, structure-function connections, and relevance to human disease. Mitochondria are the powerhouses of the cell, and a great deal is known about mitochondrial energy metabolism. Less well known is the plethora of amazing mechanisms that have evolved to control expression of mitochondrial genomes. Several RNA processes and machineries in protozoa, plants, flies and humans are discussed, including: transcription and RNA polymerase mechanism; tRNA processing of 5′ and 3′ ends; mRNA maturation by nucleotide insertion/deletion editing and by RNA splicing; mRNA stability; and RNA import. Specialized factors and ribonucleoproteins (RNPs) examined include pentatricopeptide repeat (PPR) proteins, RNase P, polymerases, helicases, nucleases, editing and repair enzymes. Remarkable features of these processes and factors are either not found outside mitochondria, differ substantially among eukaryotic lineages, or are unique in biology.




Mitochondrial Disorders Caused by Nuclear Genes


Book Description

Mitochondrial cytopathies are mutations in the inherited maternal mitochondrial genome, or the nuclear DNA-mutation. Mitochondrial respiratory chain disorders (RCD) are a group of genetically and clinically heterogeneous diseases, due to the fact that protein components of the respiratory chain are encoded by both mitochondrial and nuclear genomes and are essential in all cells. In addition, the biogenesis, structure and function of mitochondria, including DNA replication, transcription, and translation, all require nuclear encoded genes. Since mitochondria are present in every cell, every tissue, mitochondrial disorder usually affects multiple organs.




Mitochondrial Diseases


Book Description

This collection of reviews and protocols provides the reader with an introduction to the current state of knowledge on how various diseases are related to mitochondrial dysfunction. Mitochondria contain their own genome, a small, circular double-stranded DNA (mtDNA), and alterations in mtDNA may play an important role in the multistep carcinogenesis of at least some types of human cancer. In addition to mutations of mtDNA, many mitochondrial syndromes are due to abnormalities in nuclear genes related to oxidative phosphorylation (OXPHOS). Mitochondrial tRNA (MTT) gene mutations are an important cause of human morbidity and are associated with a wide range of pathology, from isolated organ?]specific diseases such as myopathy or hearing loss, to multisystem disorders with encephalopathy, gastrointestinal dysmotility, and life?]threatening cardiomyopathy. The relationship of the mitochondrion organelle to aging and longevity is also discussed. Laboratory protocols describe methodology to characterize mtDNA heteroplasmy by parallel sequencing. Each eukaryotic cell contains hundreds of mitochondria with hundreds of mitochondria genomes. Mutant and wild-type mtDNA may co-exist as heteroplasmy, and cause human disease. The purpose of this protocol is to simultaneously determine mtDNA sequence and quantify the heteroplasmic level. Another protocol describes procedures for obtaining tissue sections and cell material suitable for histological evaluation of OXPHOS activity and integrity and immunodetection of the complexes in tissue from patients suspected of mitochondrial disease. Emphasis lies on the diagnostic potential of these techniques to differentiate mtDNA from nuclear mutations. This e-book — a curated collection from eLS, WIREs, and Current Protocols — offers a fantastic introduction to the field of mitochondrial diseases for students or interdisciplinary collaborators.




Mitochondrial DNA, Mitochondria, Disease and Stem Cells


Book Description

This volume investigates how the mitochondrial genome is transmitted, segregated, and inherited. It starts by describing mtDNA mutations and deletions and how these impact on the offspring’s well-being. It progresses to discuss how mutations to the mtDNA-nuclear-encoded transcription, replication and translational factors lead to mtDNA-depletion syndromes and how these affect cellular function and lead to the pathology of human mitochondrial disease. It also highlights the importance of the mitochondrial assembly factors and how mutations to these can lead to mitochondrial disease. The reader is then introduced to how mtDNA is transmitted through the oocyte and how stem cells can be used to study mitochondrial biogenesis and mtDNA replication and transcription in undifferentiated pluripotent and differentiating cells and how mitochondria adapt during this process. It then discusses how diseases like cancer are initiated and regulated by mutations to mitochondrial DNA and dysfunctional mitochondria. Finally, it draws on assisted reproductive technologies to discuss how some of these approaches might be adapted to prevent the transmission of mutant and deleted mtDNA from one generation to the next.




Mitochondrial Oxidative Phosphorylation


Book Description

This book will describe the nuclear encoded genes and their expressed proteins of mitochondrial oxidative phosphorylation. Most of these genes occur in eukaryotic cells, but not in bacteria or archaea. The main function of mitochondria, the synthesis of ATP, is performed at subunits of proton pumps (complexes I, III, IV and V), which are encoded on mitochondrial DNA. The nuclear encoded subunits have mostly a regulatory function. However, the specific physiological functions of the nuclear encoded subunits of complexes I, III, IV, and V are mostly unknown. New data indicates that they are essential for life of higher organisms, which is characterized by an adult life without cell division (postmeiotic stage) in most tissues, after the juvenile growth. For complex IV (cytochrome c oxidase) some of these subunits occur in tissue-specific (subunits IV, VIa, VIb, VIIa, VIII), developmental-specific (subunits IV, VIa, and VIIa) as well as species-specific isoforms. Defective genes of some subunits were shown to induce mitochondrial diseases. Mitochondrial genes and human diseases will also be covered.




Mitochondrial DNA Mutations in Aging, Disease and Cancer


Book Description

Many human genetic diseases associated with blood, brain, colon, ear, eye, heart, kidney, liver, muscle, and pancreas are caused by mutations in mitochondrial DNA. Mutations in DNA can result in defects of the electron transport complexes, intermediates of the tricarboxylic acid cycle and substrate transport. The clinical manifestation of these diseases often involves muscle and the nervous system. Mitochondrial DNA mutations have now been associated with aging as well as age-related degenerative diseases such as Parkinson's, Alzheimer's, and Huntington's diseases. Changes in structure, function, and a number of mitochondria play an important role in carcinogenesis. Furthermore, the role of mitochondria in the execution of programmed cell death or apoptosis has been recognized recently.







Mitochondrial DNA and Diseases


Book Description

The book describes molecular principles and mechanisms by which mitochondrial DNA (mtDNA) can drive the occurrence of diseases and the latest understanding of mtDNA biology. The book explores roles of mtDNA mutation and genetic changes in cancer, with a special focus on lung cancer, and the significance of approach, application, and bioethics of mtDNA sequencing. Authors made a great effort to overview roles of mtDNA signaling pathways, base excision repair, methylation, USP30-mediated regulation, mitochondrial ribosome, autophagy pathways, or ROS-dependent signaling in the pathogenesis, diagnosis, prevention and treatment of diseases. It also demonstrates the importance of basic mitochondrial genetics and the relationship between mutations and disease phenotypes and ageing. This book covers not only the basic information of mtDNA, the relationship of mtDNA and disease, but also mtDNA in stem cell and mitochondria and metabolism etc. The book is written for biological and clinical students and researchers in the field of mtDNA–associated diseases.




The Human Mitochondrial Genome


Book Description

The Human Mitochondrial Genome: From Basic Biology to Disease offers a comprehensive, up-to-date examination of human mitochondrial genomics, connecting basic research to translational medicine across a range of disease types. Here, international experts discuss the essential biology of human mitochondrial DNA (mtDNA), including its maintenance, repair, segregation, and heredity. Furthermore, mtDNA evolution and exploitation, mutations, methods, and models for functional studies of mtDNA are dealt with. Disease discussion is accompanied by approaches for treatment strategies, with disease areas discussed including cancer, neurodegenerative, age-related, mtDNA depletion, deletion, and point mutation diseases. Nucleosides supplementation, mitoTALENs, and mitoZNF nucleases are among the therapeutic approaches examined in-depth. With increasing funding for mtDNA studies, many clinicians and clinician scientists are turning their attention to mtDNA disease association. This book provides the tools and background knowledge required to perform new, impactful research in this exciting space, from distinguishing a haplogroup-defining variant or disease-related mutation to exploring emerging therapeutic pathways. Fully examines recent advances and technological innovations in the field, enabling new mtDNA studies, variant and mutation identification, pathogenic assessment, and therapies Disease discussion accompanied by diagnostic and therapeutic strategies currently implemented clinically Outlines and discusses essential research protocols and perspectives for young scientists to pick up Features an international team of authoritative contributors from basic biologists to clinician-scientists