Analysis of Cancer Risks in Populations Near Nuclear Facilities


Book Description

In the late 1980s, the National Cancer Institute initiated an investigation of cancer risks in populations near 52 commercial nuclear power plants and 10 Department of Energy nuclear facilities (including research and nuclear weapons production facilities and one reprocessing plant) in the United States. The results of the NCI investigation were used a primary resource for communicating with the public about the cancer risks near the nuclear facilities. However, this study is now over 20 years old. The U.S. Nuclear Regulatory Commission requested that the National Academy of Sciences provide an updated assessment of cancer risks in populations near USNRC-licensed nuclear facilities that utilize or process uranium for the production of electricity. Analysis of Cancer Risks in Populations near Nuclear Facilities: Phase 1 focuses on identifying scientifically sound approaches for carrying out an assessment of cancer risks associated with living near a nuclear facility, judgments about the strengths and weaknesses of various statistical power, ability to assess potential confounding factors, possible biases, and required effort. The results from this Phase 1 study will be used to inform the design of cancer risk assessment, which will be carried out in Phase 2. This report is beneficial for the general public, communities near nuclear facilities, stakeholders, healthcare providers, policy makers, state and local officials, community leaders, and the media.




Nuclear Power and the Environment


Book Description

Reviews the political and social context for nuclear power generation, the nuclear fuel cycles and their implications for the environment.




University Physics


Book Description

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.




The Manhattan Project


Book Description

A history of the origins and development of the American atomic bomb program during WWII. Begins with the scientific developments of the pre-war years. Details the role of the U.S. government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. Concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission. Chapters: the Einstein letter; physics background, 1919-1939; early government support; the atomic bomb and American strategy; and the Manhattan district in peacetime. Illustrated.




Otto Hahn and the Rise of Nuclear Physics


Book Description

and less as the emanation unden\'ent radioactive decay, and it became motion less after about 30 seconds. Since this process was occurring very rapidly, Hahn and Sackur marked the position of the pointer on a scale with pencil marks. As a timing device they used a metronome that beat out intervals of approximately 1. 3 seconds. This simple method enabled them to determine that the half-life of the emanations of actinium and emanium were the same. Although Giesel's measurements had been more precise than Debierne's, the name of actinium was retained since Debierne had made the discovery first. Hahn now returned to his sample of barium chloride. He soon conjectured that the radium-enriched preparations must harbor another radioactive sub stance. The liquids resulting from fractional crystallization, which were sup posed to contain radium only, produced two kinds of emanation. One was the long-lived emanation of radium, the other had a short life similar to the emanation produced by thorium. Hahn tried to separate this substance by adding some iron to the solutions that should have been free of radium, but to no avail. Later the reason for his failure became apparent. The element that emitted the thorium emanation was constantly replenished by the ele ment believed to be radium. Hahn succeeded in enriching a preparation until it was more than 100,000 times as intensive in its radiation as the same quantity of thorium.




Nuclear Power


Book Description

Nuclear Power provides a concise, up-to-date, accessible guide to the most controversial form of power generation. The author includes a comprehensive description of the various methods for generating nuclear power and evaluates the political, strategic, environmental, economic, and emotional factors involved in each method. The analysis of real-life, tragic examples, such as the accidents in Chernobyl and Fukushima help the reader understand the associated risks and dangers of this method of power generation and the radioactive waste it creates. This is a valuable and insightful read for those involved in nuclear power, including power plant designers and engineers, as well as those involved in the protection of society and the environment. - Discusses various nuclear reactor designs and methods for generating this type of power - Evaluates the political, strategic, environmental, economic, and emotional factors involved in each technology - Explores the environmental and economic effects of nuclear power generation through various real-life tragedies, such as the accidents in Chernobyl and Fukushima




Star Power


Book Description

A concise and accessible explanation of the science and technology behind the domestication of nuclear fusion energy. Nuclear fusion research tells us that the Sun uses one gram of hydrogen to make as much energy as can be obtained by burning eight tons of petroleum. If nuclear fusion—the process that makes the stars shine—could be domesticated for commercial energy production, the world would gain an inexhaustible source of energy that neither depletes natural resources nor produces greenhouse gases. In Star Power, Alan Bécoulet offers a concise and accessible primer on fusion energy, explaining the science and technology of nuclear fusion and describing the massive international scientific effort to achieve commercially viable fusion energy. Bécoulet draws on his work as Head of Engineering at ITER (International Thermonuclear Experimental Reactor) to explain how scientists are trying to “put the sun in a box.” He surveys the history of nuclear power, beginning with post–World War II efforts to use atoms for peaceful purposes and describes how energy is derived from fusion, explaining that the essential principle of fusion is based on the capacity of nucleons (protons and neutrons) to assemble and form structures (atomic nuclei) in spite of electrical repulsion between protons, which all have a positive charge. He traces the evolution of fusion research and development, mapping the generation of electric current though fusion. The ITER project marks a giant step in the development of fusion energy, with the potential to demonstrate the feasibility of a nuclear fusion reactor. Star Power offers an introduction to what may be the future of energy production.




Physics of Nuclear Reactors


Book Description

Physics of Nuclear Reactors presents a comprehensive analysis of nuclear reactor physics. Editors P. Mohanakrishnan, Om Pal Singh, and Kannan Umasankari and a team of expert contributors combine their knowledge to guide the reader through a toolkit of methods for solving transport equations, understanding the physics of reactor design principles, and developing reactor safety strategies. The inclusion of experimental and operational reactor physics makes this a unique reference for those working and researching nuclear power and the fuel cycle in existing power generation sites and experimental facilities. The book also includes radiation physics, shielding techniques and an analysis of shield design, neutron monitoring and core operations. Those involved in the development and operation of nuclear reactors and the fuel cycle will gain a thorough understanding of all elements of nuclear reactor physics, thus enabling them to apply the analysis and solution methods provided to their own work and research. This book looks to future reactors in development and analyzes their status and challenges before providing possible worked-through solutions. Cover image: Kaiga Atomic Power Station Units 1 - 4, Karnataka, India. In 2018, Unit 1 of the Kaiga Station surpassed the world record of continuous operation, at 962 days. Image courtesy of DAE, India. Includes methods for solving neutron transport problems, nuclear cross-section data and solutions of transport theory Dedicates a chapter to reactor safety that covers mitigation, probabilistic safety assessment and uncertainty analysis Covers experimental and operational physics with details on noise analysis and failed fuel detection




An Introduction to Nuclear Waste Immobilisation


Book Description

Drawing on the authors' extensive experience in the processing and disposal of waste, An Introduction to Nuclear Waste Immobilisation, Second Edition examines the gamut of nuclear waste issues from the natural level of radionuclides in the environment to geological disposal of waste-forms and their long-term behavior. It covers all-important aspects of processing and immobilization, including nuclear decay, regulations, new technologies and methods. Significant focus is given to the analysis of the various matrices used, especially cement and glass, with further discussion of other matrices such as bitumen. The final chapter concentrates on the performance assessment of immobilizing materials and safety of disposal, providing a full range of the resources needed to understand and correctly immobilize nuclear waste.




Nuclear Power and Public Policy


Book Description

This book grew out of projects funded by the Kentucky Human ities Council in 1974 and. 1975 and by the Environmental Protec tion Agency in 1976 and 1977. As a result of the generosity of these two agencies, I was able to study the logical, methodological, and ethical assumptions inherent in the decision to utilize nuclear fission for generating electricity. Since both grants gave me the opportunity to survey public policy-making, I discovered that there were critical lacunae in allegedly comprehensive analyses of various energy technologies. Ever since this discovery, one of my goals has been to fill one of these gaps by writing a well-docu mented study of some neglected social and ethical questions regarding nuclear power. Although many assessments of atomic energy written by en vironmentalists are highly persuasive, they often also are overly emotive and question-begging. Sometimes they employ what seem to be correct ethical conclusions, but they do so largely in an in tuitive, rather than a closely-reasoned, manner. On the other hand, books and reports written by nuclear proponents, often Under government contract, almost always ignore the social and ethical aspects of energy decision-making; they focus instead only on a purely scientific assessment of fission generation of electricity. What the energy debate needs, I believe, are more studies which aim at ethical analysis and which avoid unsubstantiated assertions. I hope that these essays are steps in that direction.