Nuclear Fuel Safety Criteria


Book Description

Presents brief descriptions of 20 fuel-related safety criteria along with both the rationale for having such criteria and possible new design and operational issues which could have an effect on them.




Nuclear Fuel Safety Criteria Technical Review (Second Edition)


Book Description

Most of the current nuclear fuel safety criteria were established during the 1960s and early 1970s. Although these criteria were validated against experiments with fuel designs available at that time, a number of tests were based on unirradiated fuels. Additional verification was performed as these designs evolved, but mostly with the aim of showing that the new designs adequately complied with existing criteria, and not to establish new limits. In 1996, the OECD Nuclear Energy Agency (NEA) reviewed existing fuel safety criteria, focusing on new fuel and core designs, new cladding materials and industry manufacturing processes. The results were published in the Nuclear Fuel Safety Criteria Technical Review of 2001. The NEA has since re-examined the criteria. A brief description of each criterion and its rationale are presented in this second edition, which will be of interest to both regulators and industry (fuel vendors, utilities).




Thermal and Reliability Criteria for Nuclear Fuel Safety


Book Description

The book covers basic approaches to the nuclear fuel state of energy reactors in the last stages of the nuclear fuel cycle, these have been developed by the authors based on Ukrainian Nuclear Power Plant (NPP) operational experience. The book starts by looking at the physical safety basis of water-water energetic reactor (WWER) nuclear fuel. It goes on to discuss modern approaches to the heat exchange modelling in nuclear power plant equipment. Next, the safety criteria when making a decision about dry storage for WWER-1000 fuel assembly are discussed. Then the effect of reactor capacity cyclic changes on energy accumulation of creep formations in fuel cladding is covered in full, along with a chapter on the analysis of WWER-1000 fuel cladding failure. Finally, the book finishes with a description of thermal safety criteria for dry storage of spent nuclear fuel. The book is essential reading for anyone concerned with NPP maintenance and safety.




Thermal and Reliability Criteria for Nuclear Fuel Safety


Book Description

The book covers basic approaches to the nuclear fuel state of energy reactors in the last stages of the nuclear fuel cycle, these have been developed by the authors based on Ukrainian Nuclear Power Plant (NPP) operational experience. The book starts by looking at the physical safety basis of water-water energetic reactor (WWER) nuclear fuel. It goes on to discuss modern approaches to the heat exchange modelling in nuclear power plant equipment. Next, the safety criteria when making a decision about dry storage for WWER-1000 fuel assembly are discussed. Then the effect of reactor capacity cyclic changes on energy accumulation of creep formations in fuel cladding is covered in full, along with a chapter on the analysis of WWER-1000 fuel cladding failure. Finally, the book finishes with a description of thermal safety criteria for dry storage of spent nuclear fuel. The book is essential reading for anyone concerned with NPP maintenance and safety.







Safety and Security of Commercial Spent Nuclear Fuel Storage


Book Description

In response to a request from Congress, the Nuclear Regulatory Commission and the Department of Homeland Security sponsored a National Academies study to assess the safety and security risks of spent nuclear fuel stored in cooling pools and dry casks at commercial nuclear power plants. The information provided in this book examines the risks of terrorist attacks using these materials for a radiological dispersal device. Safety and Security of Commercial Spent Nuclear Fuel is an unclassified public summary of a more detailed classified book. The book finds that successful terrorist attacks on spent fuel pools, though difficult, are possible. A propagating fire in a pool could release large amounts of radioactive material, but rearranging spent fuel in the pool during storage and providing emergency water spray systems would reduce the likelihood of a propagating fire even under severe damage conditions. The book suggests that additional studies are needed to better understand these risks. Although dry casks have advantages over cooling pools, pools are necessary at all operating nuclear power plants to store at least the recently discharged fuel. The book explains it would be difficult for terrorists to steal enough spent fuel to construct a significant radiological dispersal device.




Safety of Nuclear Fuel Cycle Facilities


Book Description

This Safety Requirements publication establishes a basis for safety and for safety assessment at all stages in the lifetime of nuclear fuel cycle facilities. A broad scope of requirements is established for site evaluation, design, construction, commissioning, operation and preparation for decommissioning that must be satisfied to ensure safety. These requirements apply to facilities for conversion, enrichment, nuclear fuel production, storage of fresh and spent fuels, reprocessing, preparation for disposal and associated research and development facilities.




Core Management and Fuel Handling for Nuclear Power Plants


Book Description

This Safety Guide supplements and elaborates upon the safety requirements for core management and fuel handling established in Section 5 of Safety Standards Series No. NS-R-2, Safety of Nuclear Power Plants: Operation. It also relates to Safety Standards Series No. NS-G-2.4, The Operating Organization for Nuclear Power Plants.




Analysis of Differences in Fuel Safety Criteria for WWER and Western PWR Nuclear Power Plants


Book Description

This report captures the common features and differences between Western PWR and WWER fuel, and may serve as a general basis for the sefety evaluation of these fuels. Therefore, it should be very beneficial for PWR and WWER licensing activities, as it focuses on the issues of importance for the review of fuel safety cases.