Nuclear Magnetic Resonance Probes of Molecular Dynamics


Book Description

Nuclear Magnetic Resonance Probes of Molecular Dynamics describes the theoretical basis and experimental techniques that make modern NMR spectroscopy a powerful and flexible tool for probing molecular dynamics in chemical, physical, and biochemical systems. Individual chapters, written by leaders in the development and application of NMR from around the world, treat systems that range from synthetic polymers, liquid crystals, and catalysts to proteins and oligonucleotides and techniques that include deuterium NMR, magic angle spinning, multidimensional spectroscopy, and magnetic resonance imaging. A combination of elementary and advanced material makes the book a useful introduction to the field for students at the graduate level as well as an important reference for practising NMR spectroscopists.




Nuclear Magnetic Resonance Spectroscopy of Liquid Crystals


Book Description

This edited volume provides an extensive overview of how nuclear magnetic resonance can be an indispensable tool to investigate molecular ordering, phase structure, and dynamics in complex anisotropic phases formed by liquid crystalline materials. The chapters, written by prominent scientists in their field of expertise, provide a state-of-the-art scene of developments in liquid crystal research. The fantastic assortment of shape anisotropy in organic molecules leads to the discoveries of interesting new soft materials made at a rapid rate which not only inject impetus to address the fundamental physical and chemical phenomena, but also the potential applications in memory, sensor and display devices. The review volume also covers topics ranging from solute studies of molecules in nematics and biologically ordered fluids to theoretical approaches in treating elastic and viscous properties of liquid crystals. This volume is aimed at graduate students, novices and experts alike, and provides an excellent reference material for readers interested in the liquid crystal research. It is, indeed, a reference book for every science library to have. Sample Chapter(s). Chapter 1: Novel Strategies for Solving Highly Complex NMR Spectra of Solutes in Liquid Crystals (1,464 KB). Contents: Novel Strategies for Solving Highly Complex NMR Spectra of Solutes in Liquid Crystals (E E Burnell et al.); Analytical Potentials of Natural Abundance Deuterium NMR Spectroscopy in Achiral Thermotropics and Polypeptide Chiral Oriented Solvents (P Lesot & C Aroulande); Noble Gas Probes in NMR Studies of Liquid Crystals (J Jokisaari); Bicelles OCo A Much Needed Magic Wand to Study Membrane Proteins by NMR Spectroscopy (R Soong et al.); Advances in Proton NMR Relaxometry in Thermotropic Liquid Crystals (P J Sebastiuo et al.); Deuterium NMR Study of Magnetic Field Distortions in Ferroelectric Mesogens (R Y Dong); Deuteron NMR Study of the Effects of Random Quenched Disorder in 12CB Silica Dispersions (D Finotello & V Pandya); Dynamics of Liquid Crystals by Means of Deuterium NMR Relaxation (C A Veracini & V Domenici); Translational Self-Diffusion Measurements in Thermotropics by Means of Statistic Field Gradients NMR Diffusometry (M Cifelli); Deuterium NMR Studies of Static and Dynamic Director Alignment for Low Molar Mass Nematics (A Sugimura & G R Luckhurst); Viscoelastic Properties of Liquid Crystals: Statistical-Mechanical Approaches and Molecular Dynamics Simulations (A V Zakharov); Carbon-13 NMR Studies of Thermotropic Liquid Crystals (R Y Dong); A Combined DFT and Carbon-13 NMR Study of a Biaxial Bent-Core Mesogen (A Marini et al.). Readership: Chemists, physicists and material scientists. In particular, NMR spectroscopists.




NMR Spectroscopy in Liquids and Solids


Book Description

NMR Spectroscopy in Liquids and Solids provides an introduction of the general concepts behind Nuclear Magnetic Resonance (NMR) and its applications, including how to perform adequate NMR experiments and interpret data collected in liquids and solids to characterize molecule systems in terms of their structure and dynamics.The book is composed of t













Nuclear Magnetic Resonance of Paramagnetic Macromolecules


Book Description

Since A. Kowalsky's first report of the spectrum of cytochrome c in 1965, interest in the detection, assignment and interpretation of paramagnetic molecules has surged, especially in the last decade. Two classes of systems have played a key role in the development of the field: heme proteins and iron-sulfur proteins. These two systems are unique in many respects, one of which is that they contain well-defined chromophores, each of which can be studied in detail outside the protein matrix. They are the most successfully studied macromolecules, and the first eight and last six of the seventeen contributions to this book deal with heme and/or iron-sulfur proteins. The middle three chapters survey the progress on, and significant promise of, more difficult systems which do not possess a chromophore, but which have nevertheless yielded remarkable insights into their structure.




The Chemistry of Hyperpolarized Magnetic Resonance Probes


Book Description

The Chemistry of Hyperpolarized Magnetic Resonance Probes, Volume Seven focuses on the chemical aspects of hyperpolarized NMR/MRI technology, with synthesis and characterizations of labeled compounds discussed from a practical point-of-view. A brief overview of the various hyperpolarization techniques are given, with the optimization of hyperpolarization conditions and the determination of critical parameters such as polarization level and T1 relaxation values described. A practical guide on the in vivo applications of hyperpolarized compounds in small animals is also included. - Helps readers understand the structural features that determine the properties of HP-probes, such as chemical shift and relaxation times - Aids readers in selecting stable isotope labeled probes for hyperpolarized NMR/MRI applications - Teachers readers how to use the most appropriate synthetic methodology for the labeled probes - Covers how to find the most suitable polarization technique (DNP, PHIP etc.) for the probe




Classical and Quantum Molecular Dynamics in NMR Spectra


Book Description

The book provides a detailed account of how condensed-phase molecular dynamics are reflected in the line shapes of NMR spectra. The theories establishing connections between random, time-dependent molecular processes and lineshape effects are exposed in depth. Special emphasis is placed on the theoretical aspects, involving in particular intermolecular processes in solution, and molecular symmetry issues. The Liouville super-operator formalism is briefly introduced and used wherever it is beneficial for the transparency of presentation. The proposed formal descriptions of the discussed problems are sufficiently detailed to be implemented on a computer. Practical applications of the theory in solid- and liquid-phase studies are illustrated with appropriate experimental examples, exposing the potential of the lineshape method in elucidating molecular dynamics NMR-observable molecular phenomena where quantization of the spatial nuclear degrees of freedom is crucial are addressed in the last part of the book. As an introduction to this exciting research field, selected aspects of the quantum mechanics of isolated systems undergoing rotational tunnelling are reviewed, together with some basic information about quantum systems interacting with their condensed environment. The quantum theory of rate processes evidenced in the NMR lineshapes of molecular rotors is presented, and illustrated with appropriate experimental examples from both solid- and liquid-phase spectra. In this context, the everlasting problem of the quantum-to-classical transition is discussed at a quantitative level. The book will be suitable for graduate students and new and practising researchers using NMR techniques.




NMR-MRI, μSR and Mössbauer Spectroscopies in Molecular Magnets


Book Description

In this book an extensive overview on the results obtained during the last decade and on recent achievements in the study of molecular magnets by means of Nuclear Magnetic Resonance, Muon Spin Rotation, Magnetic Resonance Imaging and Mossbauer techniques is presented. The aim is to introduce the reader to these techniques and to give a general background on their application to molecular spin systems.