Nuclear Architecture and Dynamics


Book Description

Nuclear Architecture and Dynamics provides a definitive resource for (bio)physicists and molecular and cellular biologists whose research involves an understanding of the organization of the genome and the mechanisms of its proper reading, maintenance, and replication by the cell. This book brings together the biochemical and physical characteristics of genome organization, providing a relevant framework in which to interpret the control of gene expression and cell differentiation. It includes work from a group of international experts, including biologists, physicists, mathematicians, and bioinformaticians who have come together for a comprehensive presentation of the current developments in the nuclear dynamics and architecture field. The book provides the uninitiated with an entry point to a highly dynamic, but complex issue, and the expert with an opportunity to have a fresh look at the viewpoints advocated by researchers from different disciplines. - Highlights the link between the (bio)chemistry and the (bio)physics of chromatin - Deciphers the complex interplay between numerous biochemical factors at task in the nucleus and the physical state of chromatin - Provides a collective view of the field by a large, diverse group of authors with both physics and biology backgrounds







Chromatin Structure and Gene Expression


Book Description

Since publication of the first edition in 1995, there have been significant advances and understanding of chromatin structure and its relation to gene expression. These include a high-resolution structure of the nucleosome core, discovery of the enzymes and complexes that mediate histone acetylation and deacetylation, discovery of novel ATP-dependent chromatin remodeling complexes, new insights into nuclear organization and epigenetic silencing mechanisms. In light of these advances, Chromatin Structure and Gene Expression (2ed.) includes updated chapters and additional material that introduce new concepts in the process of gene regulation in chromatin.




Introduction to Epigenetics


Book Description

This open access textbook leads the reader from basic concepts of chromatin structure and function and RNA mechanisms to the understanding of epigenetics, imprinting, regeneration and reprogramming. The textbook treats epigenetic phenomena in animals, as well as plants. Written by four internationally known experts and senior lecturers in this field, it provides a valuable tool for Master- and PhD- students who need to comprehend the principles of epigenetics, or wish to gain a deeper knowledge in this field. After reading this book, the student will: Have an understanding of the basic toolbox of epigenetic regulation Know how genetic and epigenetic information layers are interconnected Be able to explain complex epigenetic phenomena by understanding the structures and principles of the underlying molecular mechanisms Understand how misregulated epigenetic mechanisms can lead to disease




Nuclear Pore Complexes and Nucleocytoplasmic Transport - Methods


Book Description

Volume 122 of Methods in Cell Biology describes modern tools and techniques used to study nuclear pore complexes and nucleocytoplasmic transport in diverse eukaryotic model systems (including mammalian cells, Xenopus, C. elegans, yeast). The volume enables investigators to analyze nuclear pore complex structure, assembly, and dynamics; to evaluate protein and RNA trafficking through the nuclear envelope; and to design in vivo or in vitro assays appropriate to their research needs. Beyond the study of nuclear pores and transport as such, these protocols will also be helpful to scientists characterizing gene regulation, signal transduction, cell cycle, viral infections, or aging. The NPC being one of the largest multiprotein complexes in the cell, some protocols will also be of interest for people currently characterizing other macromolecular assemblies. This book is thus designed for laboratory use by graduate students, technicians, and researchers in many molecular and cellular disciplines. - Describes modern tools and techniques used to study nuclear pore complexes and nucleocytoplasmic transport in diverse eukaryotic model systems (mammalian cells, Xenopus, C. elegans, yeast) - Chapters are written by experts in the field - Cutting-edge material




The Nuclear Envelope


Book Description

This volume provides a wide range of protocols used in studying the nuclear envelope, with special attention to the experimental adjustments that may be required to successfully investigate this complex organelle in cells from various organisms. The Nuclear Envelope: Methods and Protocols is divided into five sections: Part I – Nuclear Envelope Isolation; Part II – Nuclear Envelope Protein Interactions, Localization, and Dynamics; Part III – Nuclear Envelope Interactions with the Cytoskeleton; Part IV – Nuclear Envelope-Chromatin Interactions; and Part V – Nucleo-Cytoplasmic Transport. Many of the modifications discussed in this book have only been circulated within laboratories that have conducted research in this field for many years. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting edge and thorough, The Nuclear Envelope: Methods and Protocols is a timely resource for researchers who have joined this dynamic and rapidly growing field.




Epigenetics, Nuclear Organization & Gene Function


Book Description

Epigenetics is the study of heritable changes in gene function that do not involve changes in the DNA sequence. These changes, consisting principally of DNA methylation, histone modifications, and non-coding RNAs, maintain or modulate the initial impact of regulatory factors that recognize and associate with particular genomic sequences. Epigenetic modifications are manifest in all aspects of normal cellular differentiation and function, but they can also have damaging effects that result in pathologies such as cancer. Research is continuously uncovering the role of epigenetics in a variety of human disorders, providing new avenues for therapeutic interventions and advances in regenerative medicine. This book's primary goal is to establish a framework that can be used to understand the basis of epigenetic regulation and to appreciate both its derivation from genetics and interdependence with genetic mechanisms. A further aim is to highlight the role played by the three-dimensional organization of the genetic material itself (the complex of DNA, histones and non-histone proteins referred to as chromatin), and its distribution within a functionally compartmentalized nucleus. This architectural organization of the genome plays a major role in the subsequent retrieval, interpretation, and execution of both genetic and epigenetic information.




Human Herpesviruses


Book Description

This comprehensive account of the human herpesviruses provides an encyclopedic overview of their basic virology and clinical manifestations. This group of viruses includes human simplex type 1 and 2, Epstein–Barr virus, Kaposi's Sarcoma-associated herpesvirus, cytomegalovirus, HHV6A, 6B and 7, and varicella-zoster virus. The viral diseases and cancers they cause are significant and often recurrent. Their prevalence in the developed world accounts for a major burden of disease, and as a result there is a great deal of research into the pathophysiology of infection and immunobiology. Another important area covered within this volume concerns antiviral therapy and the development of vaccines. All these aspects are covered in depth, both scientifically and in terms of clinical guidelines for patient care. The text is illustrated generously throughout and is fully referenced to the latest research and developments.




The Nucleus, Second Edition


Book Description

The nucleus is the most prominent structure in eukaryotic cells. It houses the cell's DNA and is the hub for DNA replication, transcription, and RNA processing. Despite its prominence and importance, our understanding of how the nucleus and its DNA are organized in space and time--and the implications of that organization for proper function--has lagged behind that of other cellular structures. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology covers recent advances in our understanding of nuclear organization and function. The contributors discuss the 3D organization of chromatin, the various nuclear bodies and compartments that have been identified, and the roles of RNA and actin in shaping nuclear organization, as well as how these structures interact with each other and with peripheral features (e.g., the nuclear pore complex and inner nuclear membrane proteins) to carry out the work of the nucleus. Insights into DNA replication timing and RNA processing dynamics based on new technologies aimed at examining chromatin and other intranuclear structures at high resolution are also included. Multiple chapters are devoted to physiological and disease processes involving disruption of nuclear structure and function (e.g., viral infection). This volume is therefore essential reading for all cell and molecular biologists, as well as pathologists interested in the role of nuclear architecture in disease.




Nuclear Mechanics and Genome Regulation


Book Description

In recent years new discoveries have made this an exciting and important field of research. This exhaustive volume presents comprehensive chapters and detailed background information for researchers working with in the field of nuclear mechanics and genome regulation. - Both classic and state-of-the-art methods readily adaptable and designed to last the test of time - Relevant to clinicians and scientists working in a wide range of fields