Lectures on Nuclear Theory


Book Description




Modern Nuclear Physics


Book Description

This textbook is a unique and ambitious primer of nuclear physics, which introduces recent theoretical and experimental progresses starting from basics in fundamental quantum mechanics. The highlight is to offer an overview of nuclear structure phenomena relevant to recent key findings such as unstable halo nuclei, superheavy elements, neutron stars, nucleosynthesis, the standard model, lattice quantum chromodynamics (LQCD), and chiral effective theory. An additional attraction is that general properties of nuclei are comprehensively explained from both the theoretical and experimental viewpoints. The book begins with the conceptual and mathematical basics of quantum mechanics, and goes into the main point of nuclear physics – nuclear structure, radioactive ion beam physics, and nuclear reactions. The last chapters devote interdisciplinary topics in association with astrophysics and particle physics. A number of illustrations and exercises with complete solutions are given. Each chapter is comprehensively written starting from fundamentals to gradually reach modern aspects of nuclear physics with the objective to provide an effective description of the cutting edge in the field.




Theory of Nucleus


Book Description

Modern nuclear physics is a well developed branch of physical science, with wide-ranging applications of its results in engineering and industry. At the same time, the development of a consistent theory of nuclei and nuclear processes presents certain problems. It is well known that the most important aim of nuclear physics is the study of nuclear structure and the explanation of properties on the basis of the interaction between nucleons which constitute nuclei. Difficulties of a modern theory of the nucleus are caused by both an insufficient knowledge of nuclear interactions and the multi particle character of nuclear systems. Experimental data on nuclear interactions do not contradict the hypothesis of the pair character of nuclear forces. However, the absence of rigorous meth ods of calculations of many particle nuclear systems with strong interaction makes it necessary to use macroscopic nuclear models to describe particular nuclear properties. Nuclear models have been developed in different ways, and the models themselves have been modified and complicated. In spite of the visible discrepancy, different models of the nucleus significantly supple ment one another. The development of nuclear models has led to considerable progress in the understanding of atomic nuclei. The current results of theo retical nuclear physics are reported in numerous scientific papers. The most important and relevant experimental and theoretical results can be found in many monographs, the best of which are written by well-known experts in the field.




Atomic Structure Theory


Book Description

This book provides a hands-on experience with atomic structure calculations. Material covered includes angular momentum methods, the central field Schrödinger and Dirac equations, Hartree-Fock and Dirac-Hartree-Fock equations, multiplet structure, hyperfine structure, the isotope shift, dipole and multipole transitions, basic many-body perturbation theory, configuration interaction, and correlation corrections to matrix elements. The book also contains numerical methods for solving the Schrödinger and Dirac eigenvalue problems and the (Dirac)-Hartree-Fock equations.




From Nucleons to Nucleus


Book Description

From Nucleons to Nucleus deals with single-particle and collective features of spherical nuclei. Each nuclear model is introduced and derived in detail. The formalism is then applied to light and medium-heavy nuclei in worked-out examples, and finally the acquired skills are strengthened by a wide selection of exercises, many relating the models to experimental data. Nuclear properties are discussed using particles, holes and quasi-particles. From Nucleons to Nucleus is based on lectures on nuclear physics given by the author, and serves well as a textbook for advanced students. Researchers too will appreciate it as a well-balanced reference to theoretical nuclear physics.




Nuclear Structure Theory


Book Description

Nuclear Structure Theory provides a guide to nuclear structure theory. The book is comprised of 23 chapters that are organized into four parts; each part covers an aspect of nuclear structure theory. In the first part, the text discusses the experimentally observed phenomena, which nuclear structure theories need to look into and detail the information that supports those theories. The second part of the book deals with the phenomenological nucleon-nucleon potentials derived from phase shift analysis of nucleon-nucleon scattering. Part III talks about the phenomenological parameters used to describe their various nuclear models. The last part of the book deals with the technology of nuclear structure theory. The book will be of great use to nuclear physicists who wish to gain a better understanding of the nuclear structure theory.




Quantum Mechanics for Nuclear Structure


Book Description

This book, the first of a two-volume set, provides a comprehensive introduction to quantum mechanics for advanced undergraduate and postgraduate students entering the field of nuclear structure studies via two-state systems: both polarized photons and spin-1/2 particles. This leads to the logic behind the physical structure and an axiomatic formulation using linear spaces and operators. The one-dimensional harmonic oscillator is used to illustrate the mechanics of quantized systems, reaching to time dependence and coherent states. Measurement theory is introduced. The transformation theory of space and time leads to wave functions. The role of group theory and rotations then leads to the quantization of angular momentum. Central force problems are handled algebraically. The development is completed with quantization of motion of a charged particle in a magnetic field. Part of IOP Series in Nuclear Spectroscopy and Nuclear Structure.




Nuclear Physics


Book Description

Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade.




Theory of Nucleus


Book Description

Modern nuclear physics is a well developed branch of physical science, with wide-ranging applications of its results in engineering and industry. At the same time, the development of a consistent theory of nuclei and nuclear processes presents certain problems. It is well known that the most important aim of nuclear physics is the study of nuclear structure and the explanation of properties on the basis of the interaction between nucleons which constitute nuclei. Difficulties of a modern theory of the nucleus are caused by both an insufficient knowledge of nuclear interactions and the multi particle character of nuclear systems. Experimental data on nuclear interactions do not contradict the hypothesis of the pair character of nuclear forces. However, the absence of rigorous meth ods of calculations of many particle nuclear systems with strong interaction makes it necessary to use macroscopic nuclear models to describe particular nuclear properties. Nuclear models have been developed in different ways, and the models themselves have been modified and complicated. In spite of the visible discrepancy, different models of the nucleus significantly supple ment one another. The development of nuclear models has led to considerable progress in the understanding of atomic nuclei. The current results of theo retical nuclear physics are reported in numerous scientific papers. The most important and relevant experimental and theoretical results can be found in many monographs, the best of which are written by well-known experts in the field.