Nucleic Acids in Chemistry and Biology


Book Description

Since the discovery of the DNA double helix in 1953, nucleic acids have formed the central theme of much of contemporary molecular science. Recent mastery of nucleic acids synthesis has been the key to the establishment of the biotechnology industry, and our improving knowledge of nucleic acid structures and interactions is considerably influencing the design of novel drugs. The first edition of this book responded to the pressing need for a single volume that integrated the chemistry and biology of the nucleic acids in an introductory yet authoritative text. This second and completely updated edition, which includes a new chapter on techniques applied to nucleic acids, sets the basics of the nucleic acids in the context of the expanding horizons set by modern structural biology, RNA enzymology, drug discovery and biotechnology.




Nucleic Acids


Book Description

Providing a comprehensive account of the structures and physical chemistry properties of nucleic acids, with special emphasis on biological function, this text has been organized to meet the needs of those who have only a basic understanding of physical chemistry and molecular biology.




Nucleic Acid Polymerases


Book Description

This book provides a review of the multitude of nucleic acid polymerases, including DNA and RNA polymerases from Archea, Bacteria and Eukaryota, mitochondrial and viral polymerases, and other specialized polymerases such as telomerase, template-independent terminal nucleotidyl transferase and RNA self-replication ribozyme. Although many books cover several different types of polymerases, no book so far has attempted to catalog all nucleic acid polymerases. The goal of this book is to be the top reference work for postgraduate students, postdocs, and principle investigators who study polymerases of all varieties. In other words, this book is for polymerase fans by polymerase fans. Nucleic acid polymerases play a fundamental role in genome replication, maintenance, gene expression and regulation. Throughout evolution these enzymes have been pivotal in transforming life towards RNA self-replicating systems as well as into more stable DNA genomes. These enzymes are generally extremely efficient and accurate in RNA transcription and DNA replication and share common kinetic and structural features. How catalysis can be so amazingly fast without loss of specificity is a question that has intrigued researchers for over 60 years. Certain specialized polymerases that play a critical role in cellular metabolism are used for diverse biotechnological applications and are therefore an essential tool for research.







Modified Nucleic Acids


Book Description

This book spans diverse aspects of modified nucleic acids, from chemical synthesis and spectroscopy to in vivo applications, and highlights studies on chemical modifications of the backbone and nucleobases. Topics discussed include fluorescent pyrimidine and purine analogs, enzymatic approaches to the preparation of modified nucleic acids, emission and electron paramagnetic resonance (EPR) spectroscopy for studying nucleic acid structure and dynamics, non-covalent binding of low- and high-MW ligands to nucleic acids and the design of unnatural base pairs. This unique book addresses new developments and is designed for graduate level and professional research purposes.







The Chemical Biology of Nucleic Acids


Book Description

With extensive coverage of synthesis techniques and applications, this text describes chemical biology techniques which have gained significant impetus during the last five years. It focuses on the methods for obtaining modified and native nucleic acids, and their biological applications. Topics covered include: chemical synthesis of modified RNA expansion of the genetic alphabet in nucleic acids by creating new base pairs chemical biology of DNA replication: probing DNA polymerase selectivity mechanisms with modified nucleotides nucleic-acid-templated chemistry chemical biology of peptide nucleic acids (PNA) the interactions of small molecules with DNA and RNA the architectural modules of folded RNAs genesis and biological applications of locked nucleic acid (LNA) small non-coding RNA in bacteria microRNA-guided gene silencing nucleic acids based therapies innate immune recognition of nucleic acid light-responsive nucleic acids for the spatiotemporal control of biological processes DNA methylation frameworks for programming RNA devices RNA as a catalyst: The Diels-Alderase-Ribozyme evolving an understanding of RNA function by in vitro approaches the chemical biology of aptamers: synthesis and applications nucleic acids as detection tools bacterial riboswitch discovery and analysis The Chemical Biology of Nucleic Acids is an essential compendium of the synthesis of nucleic acids and their biological applications for bioorganic chemists, chemical biologists, medicinal chemists, cell biologists, and molecular biologists.




Diagnostic Molecular Biology


Book Description

Diagnostic Molecular Biology, Second Edition describes the fundamentals of molecular biology in a clear, concise manner with each technique explained within its conceptual framework and current applications of clinical laboratory techniques comprehensively covered. This targeted approach covers the principles of molecular biology, including basic knowledge of nucleic acids, proteins and chromosomes; the basic techniques and instrumentations commonly used in the field of molecular biology, including detailed procedures and explanations; and the applications of the principles and techniques currently employed in the clinical laboratory. Topics such as whole exome sequencing, whole genome sequencing, RNA-seq, and ChIP-seq round out the discussion. Fully updated, this new edition adds recent advances in the detection of respiratory virus infections in humans, like influenza, RSV, hAdV, hRV but also corona. This book expands the discussion on NGS application and its role in future precision medicine. - Provides explanations on how techniques are used to diagnosis at the molecular level - Explains how to use information technology to communicate and assess results in the lab - Enhances our understanding of fundamental molecular biology and places techniques in context - Places protocols into context with practical applications - Includes extra chapters on respiratory viruses (Corona)




Nucleic Acids in Chemistry and Biology


Book Description

The structure, function and reactions of nucleic acids are central to molecular biology and are crucial for the understanding of complex biological processes involved. Revised and updated Nucleic Acids in Chemistry and Biology 3rd Edition discusses in detail, both the chemistry and biology of nucleic acids and brings RNA into parity with DNA. Written by leading experts, with extensive teaching experience, this new edition provides some updated and expanded coverage of nucleic acid chemistry, reactions and interactions with proteins and drugs. A brief history of the discovery of nucleic acids is followed by a molecularly based introduction to the structure and biological roles of DNA and RNA. Key chapters are devoted to the chemical synthesis of nucleosides and nucleotides, oligonucleotides and their analogues and to analytical techniques applied to nucleic acids. The text is supported by an extensive list of references, making it a definitive reference source. This authoritative book presents topics in an integrated manner and readable style. It is ideal for graduate and undergraduates students of chemistry and biochemistry, as well as new researchers to the field.




Modified Nucleic Acids in Biology and Medicine


Book Description

This volume is comprised of 18 chapters, covering various aspects of DNA modification and RNA modified bases. It also discusses in detail circular RNA, therapeutic oligonucleotides and their different properties. The chemical nature of DNA, RNA, protein and lipids makes these macromolecules easily modifiable, but they are also susceptible to damage from both endogenous and exogenous agents. Alkylation and oxidation show a potential to disrupt the cellular redox equilibrium and cause cellular damage leading to inflammation and even chronic disease. Furthermore, DNA damage can drive mutagenesis and the resulting DNA sequence changes can induce carcinogenesis and cancer progression. Modified nucleosides can occur as a result of oxidative DNA damage and RNA turnover, and are used as markers for various diseases. To function properly some RNA needs to be chemically modified post-transcriptionally. Dysregulation of the RNA-modification pattern or of the levels of the enzymes that catalyze these modifications alters RNA functionality and can result in complex phenotypes, likely due to defects in protein translation. While modifications are best characterized in noncoding ribonucleic acids like tRNA and rRNA, coding mRNAs have also been found to contain modified nucleosides. This book is a valuable resource, not only for graduate students but also researchers in the fields of molecular medicine and molecular biology.