The Nucleon Optical Model


Book Description

The nucleon optical model is widely used to calculate the elastic scattering cross-sections and polarisations for the interaction of neutrons and protons with atomic nuclei. The optical model potentials not only describe the scattering but also provide the wave functions needed to analyse a wide range of nuclear reactions. They also unify many aspects of nuclear reactions and nuclear structure. This book consists of a comprehensive introduction to the subject and a selection of papers by the author describing the optical model in detail. It contains full references to the original literature with many examples of the application of the model to the analysis of experimental data.




Nucleon Optical Model,the


Book Description

The nucleon optical model is widely used to calculate the elastic scattering cross-sections and polarisations for the interaction of neutrons and protons with atomic nuclei. The optical model potentials not only describe the scattering but also provide the wave functions needed to analyse a wide range of nuclear reactions. They also unify many aspects of nuclear reactions and nuclear structure. This book consists of a comprehensive introduction to the subject and a selection of papers by the author describing the optical model in detail. It contains full references to the original literature with many examples of the application of the model to the analysis of experimental data.




Pions and Nuclei


Book Description

The pion plays an outstanding role in nuclear physics as a generator of the nuclear force and as an important part of the nuclear many-body problem. At the same time, pion beams are used as probes to explore the nucleus and its interactions. As pion physics has matured over the years, a rich and diverse variety of phenomena has been uncovered. The aim of this book is to examine the underlying physical picture behind these phenomena in a systematic and coherent way. The authors emphasize the interplay between physical concepts and experimental facts more than the formal tools, which are presented in a series of appendices. The book is directed towards advanced students as well as research workers.




Cluster Models and Other Topics


Book Description

This volume consists of contributions from some of Japan's most eminent nuclear theorists. The cluster model of the nucleus is discussed pedagogically and the current status of the field is surveyed. A contribution on Monte Carlo Methods and Lattice Gauge Theories gives nuclear theorists a glimpse of related developments in QCD and Gauge Theories. Few Body Systems are reviewed by Y Akaishi, paying special attention to the ATMS Multiple Scattering Method.




Classical And Quantum Dissipative Systems (Second Edition)


Book Description

Dissipative forces play an important role in problems of classical as well as quantum mechanics. Since these forces are not among the basic forces of nature, it is essential to consider whether they should be treated as phenomenological interactions used in the equations of motion, or they should be derived from other conservative forces. In this book we discuss both approaches in detail starting with the Stoke's law of motion in a viscous fluid and ending with a rather detailed review of the recent attempts to understand the nature of the drag forces originating from the motion of a plane or a sphere in vacuum caused by the variations in the zero-point energy. In the classical formulation, mathematical techniques for construction of Lagrangian and Hamiltonian for the variational formulation of non-conservative systems are discussed at length. Various physical systems of interest including the problem of radiating electron, theory of natural line width, spin-boson problem, scattering and trapping of heavy ions and optical potential models of nuclear reactions are considered and solved.




Nuclear Physics: Experimental And Theoretical


Book Description

This Comprehensive Text Presents Not Only A Detailed Exposition Of The Basic Principles Of Nuclear Physics But Also Provides A Contemporary Flavour Of The Subject By Covering The Recent Developments.Starting With A Synoptic View Of The Subject, The Book Explains Various Physical Phenomena In Nuclear Physics Alongwith The Experimental Methods Of Measurement.Nuclear Forces As Encountered In Two-Body Problems Are Detailed Next Followed By The Problems Of Radioactive Decay.Nuclear Reactions Are Then Comprehensively Explained Alongwith The Various Models Of Reaction Mechanism. This Is Followed By Recent Developments Like The Pre- Equilibrium Model And Heavy Ions Induced Reaction.The Book Would Serve As A Contemporary Text For Senior Undergraduate As Well As Post Graduate Students Of Physics. Practising Scientists And Researchers In The Area Would Also Find The Book To Be A Useful Reference Source.




Many-body Theory Exposed! Propagator Description Of Quantum Mechanics In Many-body Systems (2nd Edition)


Book Description

This comprehensive textbook on the quantum mechanics of identical particles includes a wealth of valuable experimental data, in particular recent results from direct knockout reactions directly related to the single-particle propagator in many-body theory. The comparison with data is incorporated from the start, making the abstract concept of propagators vivid and accessible. Results of numerical calculations using propagators or Green's functions are also presented. The material has been thoroughly tested in the classroom and the introductory chapters provide a seamless connection with a one-year graduate course in quantum mechanics. While the majority of books on many-body theory deal with the subject from the viewpoint of condensed matter physics, this book emphasizes finite systems as well and should be of considerable interest to researchers in nuclear, atomic, and molecular physics. A unified treatment of many different many-body systems is presented using the approach of self-consistent Green's functions. The second edition contains an extensive presentation of finite temperature propagators and covers the technique to extract the self-energy from experimental data as developed in the dispersive optical model.The coverage proceeds systematically from elementary concepts, such as second quantization and mean-field properties, to a more advanced but self-contained presentation of the physics of atoms, molecules, nuclei, nuclear and neutron matter, electron gas, quantum liquids, atomic Bose-Einstein and fermion condensates, and pairing correlations in finite and infinite systems, including finite temperature.




Nuclear Physics in a Nutshell


Book Description

Nuclear Physics in a Nutshell provides a clear, concise, and up-to-date overview of the atomic nucleus and the theories that seek to explain it. Bringing together a systematic explanation of hadrons, nuclei, and stars for the first time in one volume, Carlos A. Bertulani provides the core material needed by graduate and advanced undergraduate students of physics to acquire a solid understanding of nuclear and particle science. Nuclear Physics in a Nutshell is the definitive new resource for anyone considering a career in this dynamic field. The book opens by setting nuclear physics in the context of elementary particle physics and then shows how simple models can provide an understanding of the properties of nuclei, both in their ground states and excited states, and also of the nature of nuclear reactions. It then describes: nuclear constituents and their characteristics; nuclear interactions; nuclear structure, including the liquid-drop model approach, and the nuclear shell model; and recent developments such as the nuclear mean-field and the nuclear physics of very light nuclei, nuclear reactions with unstable nuclear beams, and the role of nuclear physics in energy production and nucleosynthesis in stars. Throughout, discussions of theory are reinforced with examples that provide applications, thus aiding students in their reading and analysis of current literature. Each chapter closes with problems, and appendixes address supporting technical topics.




Nuclear Structure Physics


Book Description

Nuclear structure Physics connects to some of our fundamental questions about the creation of universe and its basic constituents. At the same time, precise knowledge on the subject has lead to develop many important tools of human kind such as proton therapy, radioactive dating etc. This book contains chapters on some of the crucial and trending research topics in nuclear structure, including the nuclei lying on the extremes of spin, isospin and mass. A better theoretical understanding of these topics is important beyond the confines of the nuclear structure community. Additionally, the book will showcase the applicability and success of the different nuclear effective interaction parameters near the drip line, where hints for level reordering have already been seen, and where one can test the isospin-dependence of the interaction. The book offers comprehensive coverage of the most essential topics, including: • Nuclear Structure of Nuclei at or Near Drip-Lines • Synthesis challenges and properties of Superheavy nuclei • Nuclear Structure and Nuclear models - Ab-initio calculations, cluster models, Shell-model/DSM, RMF, Skyrme • Shell Closure, Magicity and other novel features of nuclei at extremes • Structure of Toroidal, Bubble Nuclei, halo and other exotic nuclei These topics are not only very interesting from theoretical nuclear physics perspective but are also quite complimentary for ongoing nuclear physics experimental program worldwide. It is hoped that the book chapters written by experienced and well known researchers/experts will be helpful for the master students, graduate students and researchers and serve as a standard & uptodate research reference book on the topics covered.




Nuclear Forces


Book Description