Number Theory for Computing


Book Description

This book provides a good introduction to the classical elementary number theory and the modern algorithmic number theory, and their applications in computing and information technology, including computer systems design, cryptography and network security. In this second edition proofs of many theorems have been provided, further additions and corrections were made.




Number Theory for Computing


Book Description

Taking readers from elementary number theory, via algorithmic, to applied number theory in computer science, this text introduces basic concepts, results, and methods, before going on to discuss their applications in the design of hardware and software, cryptography, and security. Aimed at undergraduates in computing and information technology, and presupposing only high-school math, this book will also interest mathematics students concerned with applications. XXXXXXX Neuer Text This is an essential introduction to number theory for computer scientists. It treats three areas, elementary-, algorithmic-, and applied number theory in a unified and accessible manner. It introduces basic concepts and methods, and discusses their applications to the design of hardware, software, cryptography, and information security. Aimed at computer scientists, electrical engineers and students the presentation presupposes only an understanding of high-school math.




Number Theory for Computing


Book Description

This book provides a good introduction to the classical elementary number theory and the modern algorithmic number theory, and their applications in computing and information technology, including computer systems design, cryptography and network security. In this second edition proofs of many theorems have been provided, further additions and corrections were made.




A Course in Computational Algebraic Number Theory


Book Description

A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.




Computational Number Theory


Book Description

Developed from the author's popular graduate-level course, Computational Number Theory presents a complete treatment of number-theoretic algorithms. Avoiding advanced algebra, this self-contained text is designed for advanced undergraduate and beginning graduate students in engineering. It is also suitable for researchers new to the field and pract




Advanced Topics in Computational Number Theory


Book Description

Written by an authority with great practical and teaching experience in the field, this book addresses a number of topics in computational number theory. Chapters one through five form a homogenous subject matter suitable for a six-month or year-long course in computational number theory. The subsequent chapters deal with more miscellaneous subjects.




Quantum Computational Number Theory


Book Description

This book provides a comprehensive introduction to advanced topics in the computational and algorithmic aspects of number theory, focusing on applications in cryptography. Readers will learn to develop fast algorithms, including quantum algorithms, to solve various classic and modern number theoretic problems. Key problems include prime number generation, primality testing, integer factorization, discrete logarithms, elliptic curve arithmetic, conjecture and numerical verification. The author discusses quantum algorithms for solving the Integer Factorization Problem (IFP), the Discrete Logarithm Problem (DLP), and the Elliptic Curve Discrete Logarithm Problem (ECDLP) and for attacking IFP, DLP and ECDLP based cryptographic systems. Chapters also cover various other quantum algorithms for Pell's equation, principal ideal, unit group, class group, Gauss sums, prime counting function, Riemann's hypothesis and the BSD conjecture. Quantum Computational Number Theory is self-contained and intended to be used either as a graduate text in computing, communications and mathematics, or as a basic reference in the related fields. Number theorists, cryptographers and professionals working in quantum computing, cryptography and network security will find this book a valuable asset.







Number Theory with Computer Applications


Book Description

Appropriate for most courses in Number Theory. This book effectively integrates computing algorithms into the number theory curriculum using a heuristic approach and strong emphasis on proofs. Its in-depth coverage of modern applications considers the latest trends and topics, such as elliptic curves--a subject that has seen a rise in popularity due to its use in the proof of Fermat's Last Theorem.




Elementary Number Theory with Programming


Book Description

A highly successful presentation of the fundamental concepts of number theory and computer programming Bridging an existing gap between mathematics and programming, Elementary Number Theory with Programming provides a unique introduction to elementary number theory with fundamental coverage of computer programming. Written by highly-qualified experts in the fields of computer science and mathematics, the book features accessible coverage for readers with various levels of experience and explores number theory in the context of programming without relying on advanced prerequisite knowledge and concepts in either area. Elementary Number Theory with Programming features comprehensive coverage of the methodology and applications of the most well-known theorems, problems, and concepts in number theory. Using standard mathematical applications within the programming field, the book presents modular arithmetic and prime decomposition, which are the basis of the public-private key system of cryptography. In addition, the book includes: Numerous examples, exercises, and research challenges in each chapter to encourage readers to work through the discussed concepts and ideas Select solutions to the chapter exercises in an appendix Plentiful sample computer programs to aid comprehension of the presented material for readers who have either never done any programming or need to improve their existing skill set A related website with links to select exercises An Instructor’s Solutions Manual available on a companion website Elementary Number Theory with Programming is a useful textbook for undergraduate and graduate-level students majoring in mathematics or computer science, as well as an excellent supplement for teachers and students who would like to better understand and appreciate number theory and computer programming. The book is also an ideal reference for computer scientists, programmers, and researchers interested in the mathematical applications of programming.