Numerical Analysis of Convection/transpiration Cooling


Book Description

An innovative concept utilizing the natural porosity of refractory-composite materials and hydrogen coolant to provide CONvective and TRANspiration (CONTRAN) cooling and oxidation protection has been numerically studied for surfaces exposed to a high heat flux, high temperature environment such as hypersonic vehicle engine combustor walls. A boundary layer code and a porous media finite difference code were utilized to analyze the effect of convection and transpiration cooling on surface heat flux and temperature. The boundary layer code determined that transpiration flow is able to provide blocking of the surface heat flux only if it is above a minimum level due to heat addition from combustion of the hydrogen transpirant. The porous media analysis indicated that cooling of the surface is attained with coolant flow rates that are in the same range as those required for blocking, indicating that a coupled analysis would be beneficial.




Numerical Analysis of Convection/Transpiration Cooling


Book Description

An innovative concept utilizing the natural porosity of refractory-composite materials and hydrogen coolant to provide CONvective and TRANspiration (CONTRAN) cooling and oxidation protection has been numerically studied for surfaces exposed to a high heat flux, high temperature environment such as hypersonic vehicle engine combustor walls. A boundary layer code and a porous media finite difference code were utilized to analyze the effect of convection and transpiration cooling on surface heat flux and temperature. The boundary, layer code determined that transpiration flow is able to provide blocking of the surface heat flux only if it is above a minimum level due to heat addition from combustion of the hydrogen transpirant. The porous media analysis indicated that cooling of the surface is attained with coolant flow rates that are in the same range as those required for blocking, indicating that a coupled analysis would be beneficial. Glass, David E. and Dilley, Arthur D. and Kelly, H. Neale Langley Research Center NASA/TM-1999-209828, L-17915, NAS 1.15:209828







Numerical Analysis of Transpiration Cooling on a Turbulent Flat Plate


Book Description

Transpiration cooling is a promising thermal protection system for gas turbines, atmospheric re-entry heat shields, and rocket engine combustion chambers. Design of transpiration cooling systems must rely on numerical simulation in order to reduce costs. The purpose of this work it to better understand the physical phenomena which effect turbulence and heat transfer in a turbulent boundary layer with transpiration cooling, in order to inform models of the system. Towards this goal, direct numerical simulations (DNS) of transpiration cooling in a turbulent flat-plate boundary layer at a freestream mach number of 0.3 have been performed. The coolant and the hot gas are both air, and isothermal walls and coolant at a temperature ratio of Tw/T∞ = 0.5 have been prescribed. The blowing ratio (which is the mass flux ratio between the coolant and the freestream gas), and the coolant injection boundary conditions have been varied to investigate their effects on the flow. It is found that by increasing the blowing ratio, the peak turbulent kinetic energy moves away from the wall to a region of shear between the low-momentum coolant and high-momentum hot gas. As the blowing ratio is increased, there is also a reduction in heat transfer to the porous wall. This reduction of wall heat transfer is caused by the combined effects of heat advection due to the non-zero wall-normal velocity at the wall, and the reduction of the average boundary-layer temperature due to the accumulation of coolant. A new model for the latter effect is proposed which is physically realistic in the limit cases. The proposed combined model accounts for both heat advection and film accumulation and shows good agreement with the DNS data. An increase in turbulent transport of heat with increasing blowing rate is caused by the production of vortices between the coolant and hot gas. This causes a reduction in the cooling effectiveness, and can be seen near the leading edge of the transpiration region. Log law scaling of the velocity profile with blowing walls is analyzed, and found to only be applicable for modest blowing rates. Reasons for the failure of scaling laws at high blowing rates are proposed based on the x-momentum balance of the Navier-Stokes equations. In order to investigate wall modelling effects, simulations with uniform coolant injection have been compared to simulations with injection via many small slits. It is observed that as the slits get smaller (at fixed total mass flow rate and fixed wall porosity), the results trend towards the uniform injection case. Therefore, it is hypothesized that for small pore sizes, neglecting the effects of the individual pores in the wall boundary condition is physically justifiable.




Comparison of Effectiveness of Convection-, Transpiration-, and Film-cooling Methods with Air as Coolant


Book Description

Various parts of aircraft propulsion engines that are in contact with hot gases often require cooling. Transpiration and film cooling, new methods that supposedly utilize cooling air more effectively than the conventional convection cooling, have already been proposed. The present report presents material necessary for a comparison of the cooling requirements of these two new methods with conventional convection cooling. Correlations that are regarded by the authors as the most reliable today are employed in evaluating each of the cooling processes.




RESPACE - Key Technologies for Reusable Space Systems


Book Description

A few years ago the Helmholtz Association (HGF) consisting of 15 research Institutions including the German Aerospace Center (DLR) started a network research program called ‘Virtual Institutes’. The basic idea of this program was to establish research groups formed by Helmholtz research centers and universities to study and develop methods or technologies for future applications and educate young scientists. It should also enable and encourage the partners of this Virtual Institute after 3 years funding to continue their cooperation in other programs. Following this HGF request and chance the DLR Windtunnel Department of the Institute of Aerodynamics and Flow Technology took the initiative and established a network with other DLR institutes and German u- versities RWTH Aachen, University of Stuttgart and Technical University Munich. The main goal of this network was to share the experience in system analysis, ae- dynamics and material science for aerospace for improving the understanding and applicability of some key technologies for future reusable space transportation s- tems. Therefore, the virtual institute was named RESPACE (Key Technologies for Re- Usable Space Systems).







Cooling by Natural and Mixed Convection Inside Vented Enclosure


Book Description

This book provides a, student oriented investigation to numerical convective heat transfer analysis. basic ideas are discussed in detail and full devlopement of all importent results is provided. the assumptions on which studies of convective heat transfer problems are thoroughtly discussed. The book contains many worked examples that explained the numerical methods of cooling by natural and mixed convection. Highlights of the book include: 1. A literature review concerning different enclosures shows that some several works have considered the problem of natural and mixed convection . 2. Mathematical and numerical procedure for convective heat transfer 3. A detailed discussion of the numerical investigations of natural and mixed convetion. This book, which can use to support of courses on natural and mixed convection phenomena.




Convective Heat Transfer in Porous Media


Book Description

Focusing on heat transfer in porous media, this book covers recent advances in nano and macro’ scales. Apart from introducing heat flux bifurcation and splitting within porous media, it highlights two-phase flow, nanofluids, wicking, and convection in bi-disperse porous media. New methods in modeling heat and transport in porous media, such as pore-scale analysis and Lattice–Boltzmann methods, are introduced. The book covers related engineering applications, such as enhanced geothermal systems, porous burners, solar systems, transpiration cooling in aerospace, heat transfer enhancement and electronic cooling, drying and soil evaporation, foam heat exchangers, and polymer-electrolyte fuel cells.