Numerical Investigation of Water Loss Mechanisms During Hydraulic Fracturing Flow-back Operation in Tight Oil Reservoirs


Book Description

Multi-stage hydraulic fracturing is widely applied in tight reservoir exploitation. Production is enhanced significantly if hydraulic fractures can connect to regions with enhanced permeability due to the presence of micro (and induced) fractures. However, less than 50% of fracturing fluids are typically recovered. This study models the mechanisms of water loss and retention in fracture-matrix system. The effects of capillarity and geomechanics are systematically investigated, and the time scale of water imbibition under different reservoir conditions is tested. During the shut-in (soaking) and flow-back periods, the fracture conductivity decreases as effective stress increases due to imbibition. Previous works have addressed fracture closure during the production phase; however, the coupling of imbibition due to multiphase flow and stress-dependent fracture properties during shut-in is less understood. Numerical simulation results indicate the circumstances under which this phenomenon might be beneficial or detrimental to subsequent on tight oil production. A series of mechanistic simulation models consisting of both hydraulic fractures and stochastically distributed micro fractures are constructed to simulate fluid distribution during shut-in and flow-back. Three systems: matrix, hydraulic fracture and micro fractures are explicitly represented in the computational domain. Fluid loss and retention mechanisms are systematically investigated in this study by subjecting mechanistic model to different reservoir conditions. Water imbibition into the matrix would help to displace hydrocarbons into nearby micro and hydraulic fractures, and this process could lead to an increase in initial rate. Although other water loss mechanisms including water loss in desiccated matrix and water trapping in induced micro fractures were proposed in literature, detailed understanding of the roles of water trapping in these systems is still lacking. Impacts of secondary fracture distributions and properties, matrix permeability, multiphase flow functions, wettability, initial saturation, water injection rate and shut-in duration on fluid retention and the associated time scales are assessed. Increase in short-term oil production as a result of imbibition could be counteracted by the reduction in flow capability due to fracture closure. Therefore, the coupling of stress-dependent fracture conductivity and imbibition are studied next. Our results indicate that fracture compaction can enhance imbibition and water loss, which in turn leads to further reduction in fracture pressure and conductivity. Spatial variability in micro-fracture properties is also modeled probabilistically to investigate whether it is possible for fracturing fluid to be trapped in the micro fractures, or conversely, the micro fractures could provide alternate pathways for fluids to access the hydraulic fracture systems. This work presents a quantitative study of the controlling factors of water retention due to fluid-rock properties and geomechanics. It investigates the roles of multi-scale fractures in flow-back behavior and ensuing recovery performance. The results highlight 1) the crucial interplay between shut-in duration and properties of connected fractures in short- and long-term production performances; 2) the critical interaction between imbibition and geomechanics in short- and long-term production performances. The results would have considerable impacts on understanding and improving current industry practice on fracturing design and assessment of stimulated reservoir volume.




Mathematical Modeling of Fluid Flow and Heat Transfer in Petroleum Industries and Geothermal Applications


Book Description

Geothermal energy is the thermal energy generated and stored in the Earth's core, mantle, and crust. Geothermal technologies are used to generate electricity and to heat and cool buildings. To develop accurate models for heat and mass transfer applications involving fluid flow in geothermal applications or reservoir engineering and petroleum industries, a basic knowledge of the rheological and transport properties of the materials involved (drilling fluid, rock properties, etc.)—especially in high-temperature and high-pressure environments—are needed. This Special Issue considers all aspects of fluid flow and heat transfer in geothermal applications, including the ground heat exchanger, conduction and convection in porous media. The emphasis here is on mathematical and computational aspects of fluid flow in conventional and unconventional reservoirs, geothermal engineering, fluid flow, and heat transfer in drilling engineering and enhanced oil recovery (hydraulic fracturing, CO2 injection, etc.) applications.




Numerical Investigation of Transient Flow Responses in Fractured Tight Oil Wells


Book Description

Increasing demand of global energy and limited conventional resources force the petroleum industry to shift their focus towards the low permeability reservoirs such as shale or tight rock reservoir. Multi-fractured horizontal wells have economically unlocked the massive hydrocarbon resources from unconventional reservoirs. Horizontal drilling and hydraulic fracturing create a complex fracture network that could enhance reservoir contact area to achieve economic production rates. In this study, we compute the transient response in a segment of a hydraulically fractured horizontal well using a triple-porosity model. Impacts of capillary discontinuity (fracture face-effect) and some limitations in analytical models such as sequential flow, single-phase flow and fully-connected symmetric fractures are investigated. We find that the uncertainty in model history-matched parameters and assumptions associated with analytical models could potentially over- or under-estimate production by up to 30%. History-matching with analytical models alone and the assumption of uniformly-spaced fracture stages would tend to overestimate long-term production forecast. In contrast, the assumption of no solution gas in tight oil reservoir leads to underestimation of reservoir properties such as length of fracture and permeability. Moreover, the simulated production data indicates that fracture face-effect results in rapid production decline. Lower capillary contrast between fracture and matrix results in less water blockage and higher production.







Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications


Book Description

The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.




New numerical approaches to model hydraulic fracturing in tight reservoirs with consideration of hydro-mechanical coupling effects


Book Description

In this dissertation, two new numerical approaches for hydraulic fracturing in tight reservoir were developed. A more physical-based numerical 3D-model was developed for simulating the whole hydraulic fracturing process including fracture propagation, closure and contact as well as proppant transport and settling. In this approach rock formation, pore and fracture systems were assembled together, in which hydro-mechanical coupling effect, proppant transport and settling as well as their influences on fracture closure and contact were fully considered. A combined FDM and FVM schema was used to solve the problem. Three applications by using the new approach were presented. The results illustrated the whole hydraulic fracturing process well and seemed to be logical, which confirmed the ability of the developed approach to model the in-situ hydraulic fracturing operation from injection start till fully closure. In order to investigate the orientation problem of hydraulic fracturing in tight reservoir, a new approach for simulating arbitrary fracture propagation and orientation in 2D was developed. It was solved by a hybrid schema of XFEM and FVM. Three numerical studies were illustrated, which proved the ability of the developed approach to solve the orientation problem in field cases.




Optimazation of hydraulic fracturing in tight gas reservoirs with alternative fluid


Book Description

Due to the finite nature of petroleum resources and depletion of conventional reservoirs, the exploitation of unconventional resources has been a key to meeting world energy needs. Natural gas, a cleaner fossil fuel compared to oil and coal, has an increasing role in the energy mix. It is expected that the peak global natural gas production will remain between 3.7-6.1 trillion m3 per year between 2019 and 2060. Therefore, addressing the technical challenges posed by reservoir exploitation technologies in an environmentally responsible manner is critical for efficient energy production and energy secure of the world.




Numerical Modeling of Nonlinear Problems in Hydraulic Fracturing


Book Description

Hydraulic fracturing is a stimulation technique in which fluid is injected at high pressure into low-permeability reservoirs to create a fracture network for enhanced production of oil and gas. It is the primary purpose of hydraulic fracturing to enhance well production. The three main mechanisms during hydraulic fracturing for oil and gas production which largely impact the reservoir production are: (1) fracture propagation during initial pad fluid injection, which defines the extent of the fracture; (2) fracture propagation during injection of proppant slurry (fluid mixed with granular material), creating a propped reservoir zone; and (3) shear dilation of natural fractures surrounding the hydraulically fractured zone, creating a broader stimulated zone. The thesis has three objectives that support the simulation of mechanisms that lead to enhanced production of a hydraulically-fractured reservoir. The first objective is to develop a numerical model for the simulation of the mechanical deformation and shear dilation of naturally fractured rock masses. In this work, a two-dimensional model for the simulation of discrete fracture networks (DFN) is developed using the extended finite element method (XFEM), in which the mesh does not conform to the natural fracture network. The model incorporates contact, cohesion, and friction between blocks of rock. Shear dilation is an important mechanism impacting the overall nonlinear response of naturally fractured rock masses and is also included in the model--physics previously not simulated within an XFEM context. Here, shear dilation is modeled through a linear dilation model, capped by a dilation limiting displacement. Highly nonlinear problems involving multiple joint sets are investigated within a quasi-static context. An explicit scheme is used in conjunction with the dynamic relaxation technique to obtain equilibrium solutions in the face of the nonlinear constitutive models from contact, cohesion, friction, and dilation. The numerical implementation is verified and its convergence illustrated using a shear test and a biaxial test. The model is then applied to the practical problem of the stability of a slope of fractured rock. The second objective is to develop a numerical model for the simulation of proppant transport through planar fractures. This work presents the numerical methodology for simulation of proppant transport through a hydraulic fracture using the finite volume method. Proppant models commonly used in the hydraulic fracturing literature solve the linearized advection equation; this work presents solution methods for the nonlinear form of the proppant flux equation. The complexities of solving the nonlinear and heterogeneous hyperbolic advection equation that governs proppant transport are tackled, particularly handling shock waves that are generated due to the nonlinear flux function and the spatially-varying width and pressure gradient along the fracture. A critical time step is derived for the proppant transport problem solved using an explicit solution strategy. Additionally, a predictor-corrector algorithm is developed to constrain the proppant from exceeding the physically admissible range. The model can capture the mechanisms of proppant bridging occurring in sections of narrow fracture width, tip screen-out occurring when fractures become saturated with proppant, and flushing of proppant into new fracture segments. The results are verified by comparison with characteristic solutions and the model is used to simulate proppant transport through a KGD fracture. The final objective is to develop a numerical model for the simulation of proppant transport through propagating non-planar fractures. This work presents the first monolithic coupled numerical model for simulating proppant transport through a propagating hydraulic fracture. A fracture is propagated through a two-dimensional domain, driven by the flow of a proppant-laden slurry. Modeling of the slurry flow includes the effects of proppant bridging and the subsequent flow of fracturing fluid through the packed proppant pack. This allows for the simulation of a tip screen-out, a phenomenon in which there is a high degree of physical interaction between the rock deformation, fluid flow, and proppant transport. Tip screen-out also leads to shock wave formation in the solution. Numerical implementation of the model is verified and the model is then used to simulate a tip screen-out in both planar and non-planar fractures. An analysis of the fracture aperture, fluid pressure, and proppant concentration profiles throughout the simulation is performed for three different coupling schemes: monolithic, sequential, and loose coupling. It is demonstrated that even with time step refinement, the loosely-coupled scheme fails to converge to the same results as the monolithic and sequential schemes. The monolithic and sequential algorithms yield the same solution up to the onset of a tip screen-out, after which the sequential scheme fails to converge. The monolithic scheme is shown to be more efficient than the sequential algorithm (requiring fewer iterations) and has comparable computational cost to the loose coupling algorithm. Thus, the monolithic scheme is shown to be optimal in terms of computational efficiency, robustness, and accuracy. In addition to this finding, a robust and more efficient algorithm for injection-rate controlled hydraulic fracturing simulation based on global mass conservation is presented in the thesis.




Hydraulic Fracturing in Unconventional Reservoirs


Book Description

Hydraulic Fracturing in Unconventional Reservoirs: Theories, Operations, and Economic Analysis, Second Edition, presents the latest operations and applications in all facets of fracturing. Enhanced to include today's newest technologies, such as machine learning and the monitoring of field performance using pressure and rate transient analysis, this reference gives engineers the full spectrum of information needed to run unconventional field developments. Covering key aspects, including fracture clean-up, expanded material on refracturing, and a discussion on economic analysis in unconventional reservoirs, this book keeps today's petroleum engineers updated on the critical aspects of unconventional activity. - Helps readers understand drilling and production technology and operations in shale gas through real-field examples - Covers various topics on fractured wells and the exploitation of unconventional hydrocarbons in one complete reference - Presents the latest operations and applications in all facets of fracturing




Reuse of Flowback Fluids as Hydraulic Fracturing Fluids in Tight Gas Sand Reservoirs


Book Description

Hydraulic fracturing fluids are usually prepared in the field using fresh water. High costs of water acquisition and waste water disposal, and the lack of available water resources near operation sites, make the reuse of produced water an unavoidable option. One of the fluid properties to be considered in investigating the applicability of these fluids as the fracturing base fluid is the total dissolved solids (TDS). The main objectives of the first section of this work are to investigate the feasibility of using produced water in hydraulic fracturing in sandstone fields at reservoir temperatures and study the use of chelating agents to expand the acceptable range of TDS in fracturing base fluids. The effect of salts and chelating agents on the proppant transport and rheological properties of fracturing fluids was examined in detail. A high-pH guar/borate fluid was selected as the base fluid and loaded with different concentrations of sodium, potassium, calcium, magnesium, and ethylenediaminetetraacetic acid, diammonium salt (EDTA). The experiments were conducted at 140, 225, and 305°F and a pressure of 300 psi. The results show that the presence of 2 wt% EDTA increased the acceptable maximum limit for TDS content of the base hydraulic fracturing fluid without compromising the performance of the fluid. More than 85% of analyzed flowback fluids from the West Texas region (Ozona, Canyon) were suitable to be used in future jobs with no further treatment regarding ion contents. In the second section, we developed a decision tree to optimize selection of fracturing fluid based on extensive reservoir data obtained from tight sand fields in Texas. We reviewed completion and production reports on 164 wells, from five tight gas sand reservoirs in Texas, that were completed using six different fracturing fluid categories. Bottomhole temperature, reservoir pressure gradient, mechanical strength of barriers above and below the target zone, and pay zone thickness were the six selected variables for this analysis. We could reach the Out-Of-Bag error of 28.54% which seems reasonable with the complex dataset understudy. Bottomhole temperature and Young's modulus of the lower barrier are the most and the least important variables in this process, respectively. CO2/N2/foam assisted hybrid fluid was the best predicted by our model with an error of approximately 20%. The main objectives of this paper are to: (a) to investigate the feasibility of using produced water in hydraulic fracturing in sandstone fields at reservoir temperatures, (b) introduce new techniques to evaluate the flowback fluid and to purify/qualify produced water at high temperatures, and (c) study the use of chelating agents to expand the acceptable range of TDS in fracturing base fluids. The effect of salts and chelating agents on the proppant transport and rheological properties of fracturing fluids was examined in detail. A high-pH guar/borate fluid was selected as the base fluid and loaded with different concentrations of sodium, potassium, calcium, magnesium, and ethylenediaminetetraacetic acid, diammonium salt (EDTA). The results help to determine which salts can affect the desirable expectation from the fracturing fluid and how to increase the limits further to be able to use the flowback fluids in future hydraulic fracturing jobs. The thermal stability and viscosity measurements were conducted at 140, 225, and 305°F and a pressure of 300 psi. The static settling tests were run at ambient temperature and 225°F. The results show that the presence of 2 wt% EDTA increased the acceptable maximum limit for TDS content of the base hydraulic fracturing fluid without compromising the performance of the fluid. More than 85% of analyzed flowback fluids from the West Texas region (Ozona, Canyon) were suitable to be used in future jobs with no further treatment regarding ion contents. We developed a decision method to optimize selection of fracturing fluid based on extensive reservoir data obtained from tight sand fields in Texas. The influential reservoir parameters for development of this model were selected based on information obtained from literature, reservoir simulations, and outcome of surveys filled out by fracturing experts. Correlating these variables and the fracturing fluid is a challenging task. We reviewed completion and production reports on 164 wells, from Olmos, Bossier, Morrow, Cotton Valley, and Canyon Sand reservoirs, in Texas, that were completed using six different fracturing fluid categories. Six reservoir parameters were selected for this analysis, including bottom-hole temperature, reservoir pressure gradient, formation permeability and Young's modulus, mechanical strength of barriers above and below the target zone, and pay zone thickness. For this dataset with the mentioned covariates and 164 observations, we could reach the out of sample error rate of 28.54% which seems reasonable with the complex dataset understudy. Bottom-hole temperature, pay zone thickness, and mechanical strength of lower barrier were found to be the most influential parameters for fluid selection which complies with our expectation. Pressure gradient and mechanical strength of the upper barrier were only marginally important in this fracturing fluid selection. CO2, N2, and foam assisted crosslinked gel fluids were best predicted by our model with an error of approximately 20%. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/155272