An Introduction to Inverse Scattering and Inverse Spectral Problems


Book Description

Here is a clearly written introduction to three central areas of inverse problems: inverse problems in electromagnetic scattering theory, inverse spectral theory, and inverse problems in quantum scattering theory. Inverse problems, one of the most attractive parts of applied mathematics, attempt to obtain information about structures by nondestructive measurements. Based on a series of lectures presented by three of the authors, all experts in the field, the book provides a quick and easy way for readers to become familiar with the area through a survey of recent developments in inverse spectral and inverse scattering problems.




Inverse Problems in Quantum Scattering Theory


Book Description

The normal business of physicists may be schematically thought of as predic ting the motions of particles on the basis of known forces, or the propagation of radiation on the basis of a known constitution of matter. The inverse problem is to conclude what the forces or constitutions are on the basis of the observed motion. A large part of our sensory contact with the world around us depends on an intuitive solution of such an inverse problem: We infer the shape, size, and surface texture of external objects from their scattering and absorption of light as detected by our eyes. When we use scattering experiments to learn the size or shape of particles, or the forces they exert upon each other, the nature of the problem is similar, if more refined. The kinematics, the equations of motion, are usually assumed to be known. It is the forces that are sought, and how they vary from point to point. As with so many other physical ideas, the first one we know of to have touched upon the kind of inverse problem discussed in this book was Lord Rayleigh (1877). In the course of describing the vibrations of strings of variable density he briefly discusses the possibility of inferring the density distribution from the frequencies of vibration. This passage may be regarded as a precursor of the mathematical study of the inverse spectral problem some seventy years later.




Inverse and Algebraic Quantum Scattering Theory


Book Description

This volume contains three interrelated, beautiful, and useful topics of quantum scattering theory: inverse scattering theory, algebraic scattering theory and supersymmetrical quantum mechanics. The contributions cover such issues as coupled-channel inversions at fixed energy, inversion of pion-nucleon scattering cross-sections into potentials, inversions in neutron and x-ray reflection, 3-dimensional fixed-energy inversion, inversion of electron scattering data affected by dipole polarization, nucleon-nucleon potentials by inversion versus meson-exchange theory, potential reversal and reflectionless impurities in periodic structures, quantum design in spectral, scattering, and decay control, solution hierarchy of Toda lattices, etc.




An Introduction To Inverse Problems In Physics


Book Description

This book is a compilation of different methods of formulating and solving inverse problems in physics from classical mechanics to the potentials and nucleus-nucleus scattering. Mathematical proofs are omitted since excellent monographs already exist dealing with these aspects of the inverse problems.The emphasis here is on finding numerical solutions to complicated equations. A detailed discussion is presented on the use of continued fractional expansion, its power and its limitation as applied to various physical problems. In particular, the inverse problem for discrete form of the wave equation is given a detailed exposition and applied to atomic and nuclear scattering, in the latter for elastic as well as inelastic collision. This technique is also used for inverse problem of geomagnetic induction and one-dimensional electrical conductivity. Among other topics covered are the inverse problem of torsional vibration, and also a chapter on the determination of the motion of a body with reflecting surface from its reflection coefficient.




Direct and Inverse Scattering for the Matrix Schrödinger Equation


Book Description

Authored by two experts in the field who have been long-time collaborators, this monograph treats the scattering and inverse scattering problems for the matrix Schrödinger equation on the half line with the general selfadjoint boundary condition. The existence, uniqueness, construction, and characterization aspects are treated with mathematical rigor, and physical insight is provided to make the material accessible to mathematicians, physicists, engineers, and applied scientists with an interest in scattering and inverse scattering. The material presented is expected to be useful to beginners as well as experts in the field. The subject matter covered is expected to be interesting to a wide range of researchers including those working in quantum graphs and scattering on graphs. The theory presented is illustrated with various explicit examples to improve the understanding of scattering and inverse scattering problems. The monograph introduces a specific class of input data sets consisting of a potential and a boundary condition and a specific class of scattering data sets consisting of a scattering matrix and bound-state information. The important problem of the characterization is solved by establishing a one-to-one correspondence between the two aforementioned classes. The characterization result is formulated in various equivalent forms, providing insight and allowing a comparison of different techniques used to solve the inverse scattering problem. The past literature treated the type of boundary condition as a part of the scattering data used as input to recover the potential. This monograph provides a proper formulation of the inverse scattering problem where the type of boundary condition is no longer a part of the scattering data set, but rather both the potential and the type of boundary condition are recovered from the scattering data set.







Quantum Inverse Scattering Method and Correlation Functions


Book Description

The quantum inverse scattering method is a means of finding exact solutions of two-dimensional models in quantum field theory and statistical physics (such as the sine-Go rdon equation or the quantum non-linear Schrödinger equation). These models are the subject of much attention amongst physicists and mathematicians.The present work is an introduction to this important and exciting area. It consists of four parts. The first deals with the Bethe ansatz and calculation of physical quantities. The authors then tackle the theory of the quantum inverse scattering method before applying it in the second half of the book to the calculation of correlation functions. This is one of the most important applications of the method and the authors have made significant contributions to the area. Here they describe some of the most recent and general approaches and include some new results.The book will be essential reading for all mathematical physicists working in field theory and statistical physics.




Method of Spectral Mappings in the Inverse Problem Theory


Book Description

Inverse problems of spectral analysis consist in recovering operators from their spectral characteristics. Such problems often appear in mathematics, mechanics, physics, electronics, geophysics, meteorology and other branches of natural science. This monograph deals with inverse problems of spectral analysis for ordinary differential equations and aims to present the main results on inverse spectral problems using the so-called method of spectral mappings, which is one of the main tools in inverse spectral theory.The book consists of three chapters and opens with the method of spectral mappings, presented in the simplest version for the Sturm-Liouville operator. The second chapter deals with the inverse problem of recovering higher-order differential operators of the form, on the half-line and on a finite interval. In this chapter the author introduces the so-called Weyl matrix, which is a generalization of the classical Weyl function for the selfadjoint second-order differential operator. The last chapter contains a study on inverse spectral problems for differential equations with nonlinear dependence on the spectral parameter.This monograph will be of value and interest to specialists in the field of inverse problems for differential equations.




Iterative Methods for Approximate Solution of Inverse Problems


Book Description

This volume presents a unified approach to constructing iterative methods for solving irregular operator equations and provides rigorous theoretical analysis for several classes of these methods. The analysis of methods includes convergence theorems as well as necessary and sufficient conditions for their convergence at a given rate. The principal groups of methods studied in the book are iterative processes based on the technique of universal linear approximations, stable gradient-type processes, and methods of stable continuous approximations. Compared to existing monographs and textbooks on ill-posed problems, the main distinguishing feature of the presented approach is that it doesn’t require any structural conditions on equations under consideration, except for standard smoothness conditions. This allows to obtain in a uniform style stable iterative methods applicable to wide classes of nonlinear inverse problems. Practical efficiency of suggested algorithms is illustrated in application to inverse problems of potential theory and acoustic scattering. The volume can be read by anyone with a basic knowledge of functional analysis. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems.




Methods of Inverse Problems in Physics


Book Description

This interesting volume focuses on the second of the two broad categories into which problems of physical sciences fall-direct (or forward) and inverse (or backward) problems. It emphasizes one-dimensional problems because of their mathematical clarity. The unique feature of the monograph is its rigorous presentation of inverse problems (from quantum scattering to vibrational systems), transmission lines, and imaging sciences in a single volume. It includes exhaustive discussions on spectral function, inverse scattering integral equations of Gel'fand-Levitan and Marcenko, Povzner-Levitan and Levin transforms, Møller wave operators and Krein's functionals, S-matrix and scattering data, and inverse scattering transform for solving nonlinear evolution equations via inverse solving of a linear, isospectral Schrodinger equation and multisoliton solutions of the K-dV equation, which are of special interest to quantum physicists and mathematicians. The book also gives an exhaustive account of inverse problems in discrete systems, including inverting a Jacobi and a Toeplitz matrix, which can be applied to geophysics, electrical engineering, applied mechanics, and mathematics. A rigorous inverse problem for a continuous transmission line developed by Brown and Wilcox is included. The book concludes with inverse problems in integral geometry, specifically Radon's transform and its inversion, which is of particular interest to imaging scientists. This fascinating volume will interest anyone involved with quantum scattering, theoretical physics, linear and nonlinear optics, geosciences, mechanical, biomedical, and electrical engineering, and imaging research.