Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes


Book Description

Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes covers new and exciting modeling methods to help bioengineers tackle problems for which the Finite Element Method is not appropriate. The book covers a wide range of important subjects in the field of numerical methods applied to biomechanics, including bone biomechanics, tissue and cell mechanics, 3D printing, computer assisted surgery and fluid dynamics. Modeling strategies, technology and approaches are continuously evolving as the knowledge of biological processes increases. Both theory and applications are covered, making this an ideal book for researchers, students and R&D professionals. - Provides non-conventional analysis methods for modeling - Covers the Discrete Element Method (DEM), Particle Methods (PM), MessLess and MeshFree Methods (MLMF), Agent-Based Methods (ABM), Lattice-Boltzmann Methods (LBM) and Boundary Integral Methods (BIM) - Includes contributions from several world renowned experts in their fields - Compares pros and cons of each method to help you decide which method is most applicable to solving specific problems




Advanced HPC-based Computational Modeling in Biomechanics and Systems Biology


Book Description

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.




Numerical Methods and Modelling Methodologies in Computational Biomechanics


Book Description

This book provides a description of the use of engineering simulation methods in a clear, direct and concise way, containing several relevant examples of biomechanics and biological processes analyzed with different numerical methods. It is oriented towards undergraduate and graduate students, academics, professionals, technicians and to all those interested in the use of simulation in computational biomechanics. The book begins with a review of the concepts of solid and fluid mechanics, followed by a description of engineering approximation methods such as the Finite Volume Method, the Finite Element Method and the Boundary Element Method. Then, several applications that usually appear in biomechanics modeling are presented and discussed, from the simulation of osseointegration to the simulation of lung airflow and the modeling of biological processes in intervertebral discs and mechanobiology. The book can be used as an educational tool in undergraduate courses and in introductory courses in graduate biology, medicine and engineering.




Research in Multidisciplinary Subjects (Volume- 5)


Book Description




Dynamical Modeling of Biological Systems


Book Description

This book introduces concepts and practical tools for dynamical mathematical modeling of biological systems. Dynamical models describe the behavior of a system over time as a result of internal feedback loops and external forcing, based on mathematically formulated dynamical laws, similarly to how Newton's laws describe the movement of celestial bodies. Dynamical models are increasingly popular in biology, as they tend to be more powerful than static regression models. This book is meant for undergraduate and graduate students in physics, applied mathematics and data science with an interest in biology, as well as students in biology with a strong interest in mathematical methods. The book covers deterministic models (for example differential equations), stochastic models (for example Markov chains and autoregressive models) and model-independent aspects of time series analysis. Plenty of examples and exercises are included, often taken or inspired from the scientific literature, and covering a broad range of topics such as neuroscience, cell biology, genetics, evolution, ecology, microbiology, physiology, epidemiology and conservation. The book delivers generic modeling techniques used across a wide range of situations in biology, and hence readers from other scientific disciplines will find that much of the material is also applicable in their own field. Proofs of most mathematical statements are included for the interested reader, but are not essential for a practical understanding of the material. The book introduces the popular scientific programming language MATLAB as a tool for simulating models, fitting models to data, and visualizing data and model predictions. The material taught is current as of MATLAB version 2022b. The material is taught in a sufficiently general way that also permits the use of alternative programming languages.




Simulation Modeling


Book Description

The book presents some recent specialized works of a theoretical and practical nature in the field of simulation modeling, which is being addressed to a large number of specialists, mathematicians, doctors, engineers, economists, professors, and students. The book comprises 11 chapters that promote modern mathematical algorithms and simulation modeling techniques, in practical applications, in the following thematic areas: mathematics, biomedicine, systems of systems, materials science and engineering, energy systems, and economics. This project presents scientific papers and applications that emphasize the capabilities of simulation modeling methods, helping readers to understand the phenomena that take place in the real world, the conditions of their development, and their effects, at a high scientific and technical level. The authors have published work examples and case studies that resulted from their researches in the field. The readers get new solutions and answers to questions related to the emerging applications of simulation modeling and their advantages.




Encyclopedia of Environmental Health


Book Description

Encyclopedia of Environmental Health, Second Edition, Six Volume Set presents the newest release in this fundamental reference that updates and broadens the umbrella of environmental health, especially social and environmental health for its readers. There is ongoing revolution in governance, policies and intervention strategies aimed at evolving changes in health disparities, disease burden, trans-boundary transport and health hazards. This new edition reflects these realities, mapping new directions in the field that include how to minimize threats and develop new scientific paradigms that address emerging local, national and global environmental concerns. Represents a one-stop resource for scientifically reliable information on environmental health Fills a critical gap, with information on one of the most rapidly growing scientific fields of our time Provides comparative approaches to environmental health practice and research in different countries and regions of the world Covers issues behind specific questions and describes the best available scientific methods for environmental risk assessment




Proceedings of 8th GACM Colloquium on Computational Mechanics


Book Description

This conference book contains papers presented at the 8th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry. The conference was held from August 28th – 30th, 2019 in Kassel, hosted by the Institute of Mechanics and Dynamics of the department for civil and environmental engineering and by the chair of Engineering Mechanics / Continuum Mechanics of the department for mechanical engineering of the University of Kassel. The aim of the conference is, to bring together young scientits who are engaged in academic and industrial research on Computational Mechanics and Computer Methods in Applied Sciences. It provides a plattform to present and discuss recent results from research efforts and industrial applications. In more than 150 presentations, given by young scientists, current scientific developments and advances in engineering practice in this field are presented and discussed. The contributions of the young researchers are supplemented by a poster session and plenary talks from four senior scientists from academia and industry as well as from the GACM Best PhD Award winners 2017 and 2018.




Recent Advances in iPSC Technology


Book Description

The series Advances in Stem Cell Biology is a timely and expansive collection of comprehensive information and new discoveries in the field of stem cell biology.Recent Advances in iPSC Technology, Volume 5 addresses the progress in induced pluripotent stem cells (iPSCs) technologies.Somatic cells can be reprogrammed into iPSCs by the expression of specific transcription factors. These cells are transforming biomedical research in the last 15 years. The volume teaches readers about current advances in the field. This book describes different technologies and strategies to use iPSCs for biological and clinical benefit. In recent years, remarkable progress has been made in the obtention of iPSCs and their differentiation into several cell types, tissues, and organs using state-of-the-art techniques. These advantages facilitated identification of key targets and definition of the molecular basis of several disorders. This volume will cover hot topics in the iPSC field, such as iPSCs for modeling the cardiovascular toxicities of anticancer therapies, iPSC differentiation through the lens of the noncoding genome, modeling of blood–brain barrier with iPSCs, mathematical modeling of iPSCs, iPSCs to study human brain evolution, selfrenewal in iPSCs, differences and similarities between iPSCs and embryonic stem cells, and more.The volume is written for researchers and scientists interested in stem cell therapy, cell biology, regenerative medicine, and organ transplantation and is contributed by world-renowned authors in the field. - Provides overview of the fast-moving field of induced pluripotent stem cell technology, regenerative medicine, and therapeutics - Covers the following topics: iPSCs for modeling the cardiovascular toxicities of anticancer therapies, iPSC differentiation through the lens of the non-coding genome, modeling of blood-brain barrier with iPSCs, mathematical modelling of iPSCs, iPSCs to study human brain evolution, self-renewal in iPSCs, differences and similarities between iPSCs and embryonic stem cells, and more - Contributed by world-renown experts in the field




Biomaterials for Bone Tissue Engineering


Book Description

Bone tissue engineering aims to develop artificial bone substitutes that partially or totally restore the natural regeneration capability of bone tissue lost under circumstances of injury, significant defects, or diseases such as osteoporosis. In this context, biomaterials are the keystone of the methodology. Biomaterials for bone tissue engineering have evolved from biocompatible materials that mimic the physical and chemical environment of bone tissue to a new generation of materials that actively interacts with the physiological environment, accelerating bone tissue growth. Mathematical modelling and simulation are important tools in the overall methodology. This book presents an overview of the current investigations and recent contributions in the field of bone tissue engineering. It includes several successful examples of multidisciplinary collaboration in this transversal area of research. The book is intended for students, researchers, and professionals of a number of disciplines, such as engineering, mathematics, physics, chemistry, biomedicine, biology, and veterinary. The book is composed of an editorial section and 16 original research papers authored by leading researchers of this discipline from different laboratories across the world