Numerical Methods for Nonlinear Engineering Models


Book Description

There are many books on the use of numerical methods for solving engineering problems and for modeling of engineering artifacts. In addition there are many styles of such presentations ranging from books with a major emphasis on theory to books with an emphasis on applications. The purpose of this book is hopefully to present a somewhat different approach to the use of numerical methods for - gineering applications. Engineering models are in general nonlinear models where the response of some appropriate engineering variable depends in a nonlinear manner on the - plication of some independent parameter. It is certainly true that for many types of engineering models it is sufficient to approximate the real physical world by some linear model. However, when engineering environments are pushed to - treme conditions, nonlinear effects are always encountered. It is also such - treme conditions that are of major importance in determining the reliability or failure limits of engineering systems. Hence it is essential than engineers have a toolbox of modeling techniques that can be used to model nonlinear engineering systems. Such a set of basic numerical methods is the topic of this book. For each subject area treated, nonlinear models are incorporated into the discussion from the very beginning and linear models are simply treated as special cases of more general nonlinear models. This is a basic and fundamental difference in this book from most books on numerical methods.




Numerical Methods for Engineers and Scientists


Book Description

Emphasizing the finite difference approach for solving differential equations, the second edition of Numerical Methods for Engineers and Scientists presents a methodology for systematically constructing individual computer programs. Providing easy access to accurate solutions to complex scientific and engineering problems, each chapter begins with objectives, a discussion of a representative application, and an outline of special features, summing up with a list of tasks students should be able to complete after reading the chapter- perfect for use as a study guide or for review. The AIAA Journal calls the book "...a good, solid instructional text on the basic tools of numerical analysis."




Numerical Methods in Engineering with Python 3


Book Description

Provides an introduction to numerical methods for students in engineering. It uses Python 3, an easy-to-use, high-level programming language.




Numerical Methods for Engineers


Book Description

The fifth edition of Numerical Methods for Engineers continues its tradition of excellence. Instructors love this text because it is a comprehensive text that is easy to teach from. Students love it because it is written for them--with great pedagogy and clear explanations and examples throughout. The text features a broad array of applications, including all engineering disciplines. The revision retains the successful pedagogy of the prior editions. Chapra and Canale's unique approach opens each part of the text with sections called Motivation, Mathematical Background, and Orientation, preparing the student for what is to come in a motivating and engaging manner. Each part closes with an Epilogue containing sections called Trade-Offs, Important Relationships and Formulas, and Advanced Methods and Additional References. Much more than a summary, the Epilogue deepens understanding of what has been learned and provides a peek into more advanced methods. Users will find use of software packages, specifically MATLAB and Excel with VBA. This includes material on developing MATLAB m-files and VBA macros. Approximately 80% of the problems are new or revised for this edition. The expanded breadth of engineering disciplines covered is especially evident in the problems, which now cover such areas as biotechnology and biomedical engineering.




Computational Engineering - Introduction to Numerical Methods


Book Description

Numerical simulation methods in all engineering disciplines gains more and more importance. The successful and efficient application of such tools requires certain basic knowledge about the underlying numerical techniques. The text gives a practice-oriented introduction in modern numerical methods as they typically are applied in mechanical, chemical, or civil engineering. Problems from heat transfer, structural mechanics, and fluid mechanics constitute a thematical focus of the text. For the basic understanding of the topic aspects of numerical mathematics, natural sciences, computer science, and the corresponding engineering area are simultaneously important. Usually, the necessary information is distributed in different textbooks from the individual disciplines. In the present text the subject matter is presented in a comprehensive multidisciplinary way, where aspects from the different fields are treated insofar as it is necessary for general understanding. Overarching aspects and important questions related to accuracy, efficiency, and cost effectiveness are discussed. The topics are presented in an introductory manner, such that besides basic mathematical standard knowledge in analysis and linear algebra no further prerequisites are necessary. The book is suitable either for self-study or as an accompanying textbook for corresponding lectures. It can be useful for students of engineering disciplines as well as for computational engineers in industrial practice.




Problem Solving in Chemical Engineering with Numerical Methods


Book Description

"A companion book including interactive software for students and professional engineers who want to utilize problem-solving software to effectively and efficiently obtain solutions to realistic and complex problems. An Invaluable reference book that discusses and Illustrates practical numerical problem solving in the core subject areas of Chemical Engineering. Problem Solving in Chemical Engineering with Numerical Methods provides an extensive selection of problems that require numerical solutions from throughout the core subject areas of chemical engineering. Many are completely solved or partially solved using POLYMATH as the representative mathematical problem-solving software, Ten representative problems are also solved by Excel, Maple, Mathcad, MATLAB, and Mathematica. All problems are clearly organized and all necessary data are provided. Key equations are presented or derived. Practical aspects of efficient and effective numerical problem solving are emphasized. Many complete solutions are provided within the text and on the CD-ROM for use in problem-solving exercises."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved




Numerical Analysis for Engineers and Scientists


Book Description

A graduate-level introduction balancing theory and application, providing full coverage of classical methods with many practical examples and demonstration programs.




Applied Engineering Analysis


Book Description

A resource book applying mathematics to solve engineering problems Applied Engineering Analysis is a concise textbookwhich demonstrates how toapply mathematics to solve engineering problems. It begins with an overview of engineering analysis and an introduction to mathematical modeling, followed by vector calculus, matrices and linear algebra, and applications of first and second order differential equations. Fourier series and Laplace transform are also covered, along with partial differential equations, numerical solutions to nonlinear and differential equations and an introduction to finite element analysis. The book also covers statistics with applications to design and statistical process controls. Drawing on the author's extensive industry and teaching experience, spanning 40 years, the book takes a pedagogical approach and includes examples, case studies and end of chapter problems. It is also accompanied by a website hosting a solutions manual and PowerPoint slides for instructors. Key features: Strong emphasis on deriving equations, not just solving given equations, for the solution of engineering problems. Examples and problems of a practical nature with illustrations to enhance student’s self-learning. Numerical methods and techniques, including finite element analysis. Includes coverage of statistical methods for probabilistic design analysis of structures and statistical process control (SPC). Applied Engineering Analysis is a resource book for engineering students and professionals to learn how to apply the mathematics experience and skills that they have already acquired to their engineering profession for innovation, problem solving, and decision making.







Numerical Analysis with Applications in Mechanics and Engineering


Book Description

A much-needed guide on how to use numerical methods to solve practical engineering problems Bridging the gap between mathematics and engineering, Numerical Analysis with Applications in Mechanics and Engineering arms readers with powerful tools for solving real-world problems in mechanics, physics, and civil and mechanical engineering. Unlike most books on numerical analysis, this outstanding work links theory and application, explains the mathematics in simple engineering terms, and clearly demonstrates how to use numerical methods to obtain solutions and interpret results. Each chapter is devoted to a unique analytical methodology, including a detailed theoretical presentation and emphasis on practical computation. Ample numerical examples and applications round out the discussion, illustrating how to work out specific problems of mechanics, physics, or engineering. Readers will learn the core purpose of each technique, develop hands-on problem-solving skills, and get a complete picture of the studied phenomenon. Coverage includes: How to deal with errors in numerical analysis Approaches for solving problems in linear and nonlinear systems Methods of interpolation and approximation of functions Formulas and calculations for numerical differentiation and integration Integration of ordinary and partial differential equations Optimization methods and solutions for programming problems Numerical Analysis with Applications in Mechanics and Engineering is a one-of-a-kind guide for engineers using mathematical models and methods, as well as for physicists and mathematicians interested in engineering problems.