Numerical Methods in Laminar and Turbulent Flow


Book Description

Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.







Computational Methods for Fluid Flow


Book Description

In developing this book, we decided to emphasize applications and to provide methods for solving problems. As a result, we limited the mathematical devel opments and we tried as far as possible to get insight into the behavior of numerical methods by considering simple mathematical models. The text contains three sections. The first is intended to give the fundamen tals of most types of numerical approaches employed to solve fluid-mechanics problems. The topics of finite differences, finite elements, and spectral meth ods are included, as well as a number of special techniques. The second section is devoted to the solution of incompressible flows by the various numerical approaches. We have included solutions of laminar and turbulent-flow prob lems using finite difference, finite element, and spectral methods. The third section of the book is concerned with compressible flows. We divided this last section into inviscid and viscous flows and attempted to outline the methods for each area and give examples.




Numerical Methods for Unsteady Compressible Flow Problems


Book Description

Numerical Methods for Unsteady Compressible Flow Problems is written to give both mathematicians and engineers an overview of the state of the art in the field, as well as of new developments. The focus is on methods for the compressible Navier-Stokes equations, the solutions of which can exhibit shocks, boundary layers and turbulence. The idea of the text is to explain the important ideas to the reader, while giving enough detail and pointers to literature to facilitate implementation of methods and application of concepts. The book covers high order methods in space, such as Discontinuous Galerkin methods, and high order methods in time, in particular implicit ones. A large part of the text is reserved to discuss iterative methods for the arising large nonlinear and linear equation systems. Ample space is given to both state-of-the-art multigrid and preconditioned Newton-Krylov schemes. Features Applications to aerospace, high-speed vehicles, heat transfer, and more besides Suitable as a textbook for graduate-level courses in CFD, or as a reference for practitioners in the field




Handbook of Computational Fluid Mechanics


Book Description

This handbook covers computational fluid dynamics from fundamentals to applications. This text provides a well documented critical survey of numerical methods for fluid mechanics, and gives a state-of-the-art description of computational fluid mechanics, considering numerical analysis, computer technology, and visualization tools. The chapters in this book are invaluable tools for reaching a deeper understanding of the problems associated with the calculation of fluid motion in various situations: inviscid and viscous, incompressible and compressible, steady and unsteady, laminar and turbulent flows, as well as simple and complex geometries. Each chapter includes a related bibliography Covers fundamentals and applications Provides a deeper understanding of the problems associated with the calculation of fluid motion




Fluid Flow Phenomena


Book Description

This book deals with the simulation of the incompressible Navier-Stokes equations for laminar and turbulent flows. The book is limited to explaining and employing the finite difference method. It furnishes a large number of source codes which permit to play with the Navier-Stokes equations and to understand the complex physics related to fluid mechanics. Numerical simulations are useful tools to understand the complexity of the flows, which often is difficult to derive from laboratory experiments. This book, then, can be very useful to scholars doing laboratory experiments, since they often do not have extra time to study the large variety of numerical methods; furthermore they cannot spend more time in transferring one of the methods into a computer language. By means of numerical simulations, for example, insights into the vorticity field can be obtained which are difficult to obtain by measurements. This book can be used by graduate as well as undergraduate students while reading books on theoretical fluid mechanics; it teaches how to simulate the dynamics of flow fields on personal computers. This will provide a better way of understanding the theory. Two chapters on Large Eddy Simulations have been included, since this is a methodology that in the near future will allow more universal turbulence models for practical applications. The direct simulation of the Navier-Stokes equations (DNS) is simple by finite-differences, that are satisfactory to reproduce the dynamics of turbulent flows. A large part of the book is devoted to the study of homogeneous and wall turbulent flows. In the second chapter the elementary concept of finite difference is given to solve parabolic and elliptical partial differential equations. In successive chapters the 1D, 2D, and 3D Navier-Stokes equations are solved in Cartesian and cylindrical coordinates. Finally, Large Eddy Simulations are performed to check the importance of the subgrid scale models. Results for turbulent and laminar flows are discussed, with particular emphasis on vortex dynamics. This volume will be of interest to graduate students and researchers wanting to compare experiments and numerical simulations, and to workers in the mechanical and aeronautic industries.







Modeling and Computation of Boundary-Layer Flows


Book Description

This second edition of the book, Modeling and Computation of Boundary-Layer Flows^ extends the topic to include compressible flows. This implies the inclusion of the energy equation and non-constant fluid properties in the continuity and momentum equations. The necessary additions are included in new chapters, leaving the first nine chapters to serve as an introduction to incompressible flows and, therefore, as a platform for the extension. This part of the book can be used for a one semester course as described below. Improvements to the incompressible flows portion of the book include the removal of listings of computer programs and their description, and their incor poration in two CD-ROMs. A listing of the topics incorporated in the CD-ROM is provided before the index. In Chapter 7 there is a more extended discussion of initial conditions for three-dimensional flows, application of the characteristic box to a model problem and discussion of flow separation in three-dimensional laminar flows. There are also changes to Chapter 8, which now includes new sections on Tollmien-Schlichting and cross-flow instabilities and on the predic tion of transition with parabolised stability equations, and Chapter 9 provides a description of the rational behind interactive boundary-layer procedures.