Finite Element Simulation in Surface and Subsurface Hydrology


Book Description

Finite Element Simulation in Surface and Subsurface Hydrology provides an introduction to the finite element method and how the method is applied to problems in surface and subsurface hydrology. The book presents the basic concepts of the numerical methods and the finite element approach; applications to problems on groundwater flow and mass and energy transport; and applications to problems that involve surface water dynamics. Computational methods for the solution of differential equations; classification of partial differential equations; finite difference and weighted residual integral techniques; and The Galerkin finite element method are discussed as well. The text will be of value to engineers, hydrologists, and students in the field of engineering.










Introduction to Numerical Methods for Water Resources


Book Description

Numerical methods provide a powerful and essential tool for the solution of problems of water resources. This book gives an elementary introduction to the various methods in current use and demonstrates that different methods work well in different situations and some problems requirecombinations of methods. It is essential to know something of all of them in order to make a reasoned judgement of current practice. Their applications are discussed and more specialised versions are outlined along with many references making this an invaluable, comprehensive coverage of thefield.




Numerical Methods in Subsurface Hydrology


Book Description

Solution of problems in subsurface hydrology; Theory of flow of subsurface water; Finite-difference methods applied to transient-flow problems; Solution of difference equations; Similarity solutions in subsurface hydrology; The finite element method.







Computational Methods in Subsurface Flow


Book Description

Computational Methods in Subsurface Flow explores the application of all of the commonly encountered computational methods to subsurface problems. Among the problems considered in this book are groundwater flow and contaminant transport; moisture movement in variably saturated soils; land subsidence and similar flow and deformation processes in soil and rock mechanics; and oil and geothermal reservoir engineering. This book is organized into 10 chapters and begins with an introduction to partial differential and various solution approaches used in subsurface flow. The discussion then shifts to the fundamental theory of the finite element method, with emphasis on the Galerkin finite element method and how it can be used to solve a wide range of subsurface problems. The subjects treated range from simple problems of saturated groundwater flow to more complex ones of moisture movement and multiphase flow in petroleum reservoirs. The chapters that follow focus on fluid flow and mechanical deformation of conventional and fractured porous media; point and subdomain collocation techniques and the boundary element technique; and the applications of finite difference techniques to single- and multiphase flow and solute transport. The final chapter is devoted to other alternative numerical methods that are based on combinations of the standard finite difference approach and classical mathematics. This book is intended for senior undergraduate and graduate students in geoscience and engineering, as well as for professional groundwater hydrologists, engineers, and research scientists who want to solve or model subsurface problems using numerical techniques.







Finite Elements in Water Resources


Book Description

These proceedings contain the papers presented at the Fourth International Conference on Finite Elements in Water Resources, held in June, 1982, at the University of Hannover, Federal Re public of Germany. This Conference continued the successful series of previous conferences held at Princeton University in 1976, at Imperial College in 1978, and at the University of Mississippi in 1980. Since Finite Elements have proved to be a powerful means for analysing water resource problems, the principal objective of the Conference was to provide an exchange of experiences in practical applications of the finite element method and to establish a forum for discussion regarding accuracy, economy, limitations and improvements. Related discretization methods were included within the scope of the Conference. New develop ments in numerical and computational techniques, basic mathe matical formulations, and soft- and hardware aspects were considered to be equally important topics for an exchange of ideas between both theoretically and practically oriented re searchers. The Conference Organizing Committee is very grateful to the many distinguished scientists who attended the Conference, and for their contributions towards the proceedings. This collection of papers in being made available to a wider audience of en gineers and scientists by CML Publications in Southampton, U.K.