Numerical Modeling of Emissions and Thermoacoustics in Heavy-Duty Gas Turbine Combustion Systems


Book Description

Lean premixed combustion systems have been established as state-of-the-art technology for heavy-duty gas turbines, allowing for low pollutant emissions. However, lean premixed combustion is also associated with thermoacoustic instabilities. Thus, modeling of the key performance parameters - pollutant emissions and thermoacoustics - has become mandatory in the design process. The present thesis contributes to the modeling of those key parameters. The objective was to describe and validate the methods for the prediction of emissions (NO_xand CO) and thermoacoustics. A low order approach for prediction of NO_xemissions and a high fidelity CFD-based approach for the combined prediction of emissions and thermoacoustics are presented within this work. The methods are selected and developed based on analysis of the current state of the art.




Thermoacoustic Combustion Instability Control


Book Description

Thermoacoustic Combustion Instability Control: Engineering Applications and Computer Codes provides a unique opportunity for researchers, students and engineers to access recent developments from technical, theoretical and engineering perspectives. The book is a compendium of the most recent advances in theoretical and computational modeling and the thermoacoustic instability phenomena associated with multi-dimensional computing methods and recent developments in signal-processing techniques. These include, but are not restricted to a real-time observer, proper orthogonal decomposition (POD), dynamic mode decomposition, Galerkin expansion, empirical mode decomposition, the Lattice Boltzmann method, and associated numerical and analytical approaches. The fundamental physics of thermoacoustic instability occurs in both macro- and micro-scale combustors. Practical methods for alleviating common problems are presented in the book with an analytical approach to arm readers with the tools they need to apply in their own industrial or research setting. Readers will benefit from practicing the worked examples and the training provided on computer coding for combustion technology to achieve useful results and simulations that advance their knowledge and research. - Focuses on applications of theoretical and numerical modes with computer codes relevant to combustion technology - Includes the most recent modeling and analytical developments motivated by empirical experimental observations in a highly visual way - Provides self-contained chapters that include a comprehensive, introductory section that ensures any readers new to this topic are equipped with required technical terms







Modeling and Control of Thermoacoustics in a One-dimensional Combustor


Book Description

This dissertation examines the model-based optimization of sensor placement, estimation, and control for the active suppression of thermoacoustic instabilities in a one-dimensional combustor. This research is motivated by the increasing use of lean premixed combustion for emission reduction in gas turbine combustors. Thermoacoustic instability is a potentially damaging side effect of lean premixed combustion, caused by the unstable coupling between acoustics and unsteady heat release. There is extensive existing literature on the suppression of this instability, using both passive means such as Helmholtz resonators and active stability control. Much of the work on active combustion stability control relies on the injection of an additional acoustic excitation or fuel supply to break the above undesirable unstable coupling, thereby suppressing instability. Researchers have shown the promise of active combustion instability control both in simulations and laboratory experiments, for both single and multiple modes of instability. Active combustion stability control remains relatively scarce in industrial practice, despite the rich existing literature indicating its potential for success. Several important research questions need to be answered in order to help bridge this gap. First, while much of the recent research on active combustion stability control assumes one-dimensional combustion dynamics, an open question remains regarding the importance of other dynamic effects in the combustor, such as the dynamic interactions between multiple flames. Second, the degree to which the placement of sensors and actuators in a combustor affects the accuracy with which combustion instability dynamics can be estimated remains relatively unexplored in the literature. Third, the suitability of traditional linear model-based estimation and control techniques for stabilizing combustion instabilities with nonlinear heat release dynamics also remains relatively unexplored in the literature. The overarching goal of this dissertation is to address the above gaps using a combination of optimal sensor placement, optimal estimation, and optimal control. Towards this goal, the dissertation makes six specific contributions to the literature: 1. First, the author performs an experimental comparison between thermoacoustic instabilities in single- versus multi-nozzle combustion systems (Chapter 2). This study shows that the dynamic interactions between multiple flames in a multi-nozzle combustor have a non-trivial impact on thermoacoustic instability, especially the time scales of the transient instabilities. This helps characterize and understand the constraints on the practical applicability of one-dimensional combustion instability models for multi-nozzle systems, including the models used in the remainder of this dissertation. 2. Second, the author optimizes the design of a laboratory characterization experiment for a one-dimensional combustor (Chapter 3). This optimization utilizes Fisher information analysis for optimal combustion instability characterization, for the first time. 3. Third, the dissertation shows, using a mix of simulation-based and experimental studies, that the above use of optimal experimental design improves combustion instability parameterization accuracy (Chapter 4). Moreover, by furnishing more accurate combustion instability models, one is able to achieve higher levels of confidence in the robustness of the resulting combustion stability controllers. 4. Fourth, the dissertation presents a novel algorithm that makes it possible to estimate combustion heat release rates from multi-microphone measurements of the resulting acoustic signatures, in a manner that does not require the modeling of heat release dynamics (Chapter 5). This is important because it simplifies the online estimation of heat release dynamics, compared to model-based estimation methods requiring a heat release model. 5. Fifth, the dissertation studies the impact of sensor placement on the observability and LQG control of combustion instabilities governed by a linear $n-\tau$ heat release model (Chapter 6). This work highlights the importance of placing acoustic sensors at specific locations like the pressure mode anti-node points, including the acoustically closed combustor boundary. 6. Finally, the author develops a computational framework for the co-simulation of linear combustor acoustics, model-based combustion stability control, and nonlinear heat release dynamics governed by a level-set solver (Chapter 7). To the best of the author's knowledge, this is the first framework in the literature enabling the simulation-based study of the efficacy of linear control for combustion instabilities characterized by nonlinear heat release dynamics. In making the above contributions to the literature, this dissertation builds on the well-established idea that linear model-based estimation and control can be effective in suppressing combustion instability. The novelty of the dissertation lies in: 1. Pushing the above idea further by examining the degree to which its efficacy can be enhanced further through the use of information theory to optimize sensor placement and experimental design for estimation/control applications. 2. Building a framework that makes it possible to study the efficacy of model-based linear estimation/control in the context of thermo-acoustic instabilities driven by nonlinear heat release dynamics.




Gas Turbine Combustion Modeling for a Parametric Emissions Monitoring System


Book Description

Oxides of nitrogen (NO[subscript x]), carbon monoxide (CO) and other combustion by-products of gas turbines have long been identified as harmful atmospheric pollutants to the environment and humans. Various government agencies place restrictions on emissions and often require some sort of emissions monitoring even for new low emission gas turbines. Predicting actual emissions from operating parameters that affect the formation of pollutants, called parametric emissions monitoring system (PEMS), has potential economic advantages compared to a continuous emissions monitoring system (CEMS). The problem is that a simple applicable PEMS does not exist. During this study, a gas turbine combustor model applying first engineering principles was developed to predict the emission formation of NO[subscript x]and CO in a gas turbine. The model is based on a lean-premixed combustor with a main and pilot burner including the function of a bleeding air valve. The model relies on ambient condition and load. The load is expressed as a percentage of the target speed of the gas producer turbine. Air flow and fuel flow for the main and pilot burner are calculated by the model based on the load through a set of measured input data for a specific gas turbine. To find the combustion temperature characteristics, the combustor is divided into several zones. The temperature for each zone is calculated by applying an energy balance. To predict NO[subscript x] and CO, several correlations explored by various researchers are used and compared against each other, using the calculated temperatures, pressures and equivalence ratios. A comparison between collected emissions examples from a turbine test cell data spreadsheet and predicted emissions by the developed model under the same conditions show a highly accurate match for NO[subscript x] emission at any load. Because of the high variation of CO at part load, the model predictions only match the CO data set at full load.




Acoustic Characterization of a Model Gas Turbine Combustor


Book Description

Regulations in the aerospace and power generation industries continue to place increasingly stringent limitations on the amount of pollutants a gas turbine combustion system can emit. This is often achieved by lean fuel-air mixture systems that operate at much lower flame temperatures. Lower flame temperatures push these systems to the limit of instabilities that destroy hardware and decrease the lifetime of these systems. These instabilities are the result of a feedback cycle between acoustic pressure oscillations, perturbations in the flow and mixture of reactants, and consequent oscillations in heat release. Although each component of this feedback loop has been studied, acoustic pressure oscillations are highly dependent on the geometry of each combustor configuration. This inherent challenge is further driven by the fact that these studies must often be conducted experimentally after all components of the system have been assembled. Developing techniques capable of evaluating acoustic characteristics of a system early in the design of the system will help lower cost of development while improving detection and prevention of instabilities. This study assesses inherent acoustic characteristics of a model gas turbine combustion system experimentally and through simulation. Resonant frequencies of the physical system are presented and impedances of boundary conditions at the nozzle exit are calculated. These boundary conditions serve as necessary inputs to numerical modeling methods that replicate experimental studies conducted prior. Comparison between experimental results and modeling results show that modeling techniques can be effective in analyzing a system at preliminary stages of the design process.







Emissions from Continuous Combustion Systems


Book Description

This volume documents the proceedings of the Symposium on Emissions from Continuous Combustion Systems that was held at the General Motors Research Laboratories, Warren, Michigan on September 27 and 28, 1971. This symposium was the fifteenth in an annual series presented by the Research Laboratories. Each symposium has covered a different technical discipline. To be selected as the theme of a symposium, the subject must be timely and of vital interest to General Motors as well as to the technical community at large. For each symposium, the practice is to solicit papers at the forefront of research from recognized authorities in the technical discipline of interest. Approximately sixty scientists and engineers from academic, government and industrial circles in this country and abroad are then invited to join about an equal number of General Motors technical personnel to discuss freely the commissioned papers. The technical portion of the meeting is supplemented by social functions at which ample time is afforded for informal exchanges of ideas amongst the participants. By such a direct interaction of a small and select group of informed participants, it is hoped to extend the boundaries of research in the selected technical field.




Modeling and Simulation of Turbulent Combustion


Book Description

This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.




Modeling and Simulation of the Thermo-Acoustic Instabilities of Low-Emission Gas Turbines


Book Description

Scope of this work is the developement of mathematical methods for the numerical simulation of thermo-acoustic instabilities in combustion chambers of gas turbines. The first part of the thesis deals with the modeling of the chemical processes and fluid mechanics in the combustion chamber. The conservation laws are extended to take the effects of unsteady heat release into account. Furthermore a novel mathematical model that describes the coupling between the transient combustion and the acoustic waves is developed. The second part of the thesis is concerned with the developement of numerical methods for the assessement of the system stability. By projecting the model equations in the frequency domain we obtain a system of coupled eigenvalue problems. This system is mathematically analysed and numerical methods are developed for the computation of the eigenmodes.