Numerical Modeling, Prediction of Ship Maneuvering and Hydrodynamics During Inland Waterway Transport


Book Description

"In this work, ship hydrodynamics during inland waterway transport and ship maneuvering are investigated using CFD (Computational Fluid Dynamics) based on OpenFoam. Validation and verification studies are carried out for the mesh convergence, time step convergence, sensitivity to turbulence models and dynamic mesh techniques. A quaternion-based 6DoF motion solver is implemented for the trim and sinkage predictions. Environmental effects on several inland vessels (convoy 1, convoy 2, tanker) are studied using the validated numerical models. Three important aspects, the confinement effect of the waterway, head-on encounter, and ship-bridge pile interaction are simulated. The testing conditions cover a wide range, including various channel dimensions, water depths, ship draughts and speeds. The ship resistance, wave pattern, Kelvin angle and wave elevation at specific positions are investigated as functions of these parameters. Ship maneuvering is investigated using virtual captive model tests based on the MMG (Mathematical Maneuvering Group) model. An actuator disk is implemented to replace the real propeller. Open water test, rudder force test, OTT (Oblique Towing Tank test) and CMT (Circular Motion Test) of a KVLCC2 model are carried out to obtain the hydrodynamic coefficients of the propeller, rudder and ship hull. Using the obtained coefficients, system-based maneuvering simulations are carried out and validated using the free running test data. These studies reproduce real ship tests and thus prove the validity of our numerical models. As a result, the numerical solver is promising in ship hydrodynamics and marine engineering simulations"--




Mathematical Modeling of Inland Vessel Maneuverability Considering Rudder Hydrodynamics


Book Description

This book demonstrates that different rudder configurations have different hydrodynamic characteristics, which are influenced by the profile, the parameters, and the specific configuration. The author proposes new regression formulas to help naval architects quickly estimate the rudder-induced forces and moments in maneuvering. Furthermore, the author proposes and validates an integrated maneuvering model for both seagoing ships and inland vessels. Using the proposed regression formulas and maneuvering model, the specific impacts of rudder configurations on inland vessel maneuverability are studied. In turn, the book demonstrates the application of Reynolds-Averaged Navier–Stokes (RANS) simulations to obtain rudder hydrodynamic characteristics, and the integration of the RANS results into maneuvering models as an accurate estimation of rudder forces and moments needed to quantify the impacts of rudder configurations on ships’ maneuvering performance. In addition, the author proposes new criteria for the prediction and evaluation of inland vessel maneuverability. Simulations of ships with various rudder configurations are presented, in order to analyze the impacts of rudder configurations on ship maneuverability in different classic and proposed test maneuvers. Offering essential guidance on the effects of rudders for inland vessel maneuverability, and helping practical engineers make informed design choices, the book is of interest to researchers and academics in the field of naval engineering, as well as students of naval architecture. Industrial practitioners working on ship design may also find it beneficial.




Practical Ship Hydrodynamics


Book Description

Practical Ship Hydrodynamics provides a comprehensive overview of hydrodynamic experimental and numerical methods for ship resistance and propulsion, maneuvering, seakeeping and vibration. Beginning with an overview of problems and approaches, including the basics of modeling and full scale testing, expert author Volker Bertram introduces the marine applications of computational fluid dynamics and boundary element methods. Expanded and updated, this new edition includes: Otherwise disparate information on the factors affecting ship hydrodynamics, combined to provide one practical, go-to resource. Full coverage of new developments in computational methods and model testing techniques relating to marine design and development. New chapters on hydrodynamic aspects of ship vibrations and hydrodynamic options for fuel efficiency, and increased coverage of simple design estimates of hydrodynamic quantities such as resistance and wake fraction. With a strong focus on essential background for real-life modeling, this book is an ideal reference for practicing naval architects and graduate students.




Numerical Study on Hydrodynamics of a Ship Advancing in Confined Waterways


Book Description

The prediction of ship hydrodynamics in the confined waterways is challenging. It may involve both ship-bottom and ship-bank interactions. When a ship is advancing in shallow water, the hydrodynamic behaviours may vary significantly due to the hydrodynamic interaction between the bottom of the ship hull and the seabed, or so called shallow water effects. The flow velocity in the gap between the ship bottom and the seabed increases, which will lead to an increase in ship's sinkage, trim and resistance. Also, the asymmetric flow around a ship induced by the vicinity of banks causes pressure differences between port and starboard sides, which is known as the bank effects. Therefore, an accurate prediction of shallow water and bank effects is essential to minimize the risk of the collision and the grounding for the ships. Flanders Hydraulics Research (FHR) in cooperation with the Maritime Technology Division of Ghent University has carried out shallow model tests in a towing tank equipped with surface-piercing banks and a vertical quay wall with a 1/75 scale model of the KRISO Very Large Crude carrier (KVLCC2). The forces and moments on the KVLCC2 model were obtained at various water depths, lateral distances to the banks. Additionally, the wave elevation was measured between the quay wall and the ship model. The main objective of the present paper is to simulate the complex flow around the ship and predict the hydrodynamic behaviours of a ship when advancing in the confined waterways. To simulate ship hydrodynamics in confined waterways, the CFD programme should be used to get a reliable result. In the present study, a widely used CFD programme, Star-CCM+, will be used to simulate the complex flow phenomena induced by a ship advancing in confined waterways. To evaluate the capability of the CFD software, the numerical data will be compared with the experimental data conducted by FHR. The free surface effect will be taken into account. The results will include the forces and moments acting on the ship, as well as the wave elevation between the quay wall and the ship model. The parametric study will be conducted to investigate the effects of the ship speed, the water depths and the positions in a channel. Discussions will be highlighted on the ship-bank interaction when the water depth Froude number approaches critical value.




Development and Validation of Computational Ship Hydrodynamics


Book Description

As outlined in the grant proposal for the current project, Reference /1/, the overall technical objective for the current project was to investigate the maneuvering characteristics of a displacement vessel using the RANS code CFDSHIP-IOWA, with emphasis on the hull-rudder-propeller interaction. The numerical model was to be used to evaluate maneuvering characteristics by numerically performing the tests otherwise included in a physical Planar Motion Mechanism (PMM) test. At Force Technology - Division for Maritime Industry (formerly Danish Maritime Institute) experimental procedures and methods for analyzing model scale test results and extrapolation to full scale have been established over a 35-year period. Good general and detailed knowledge of maneuvering characteristics have consequently been gained during this period. It is recognized, however, that experimental work is both time-consuming and expensive when small alterations to an existing design are made during optimization of the maneuverability of a ship. In addition, PMM testing does not provide detailed knowledge of the flow regimes inducing the measured integral level forces. Since numerical procedures address both of these concerns Computational Fluid Dynamics (CFD) has been considered as an alternative to experimental work. CFD, has not, however, readily provided a tool for assessing maneuvering characteristics. To improve on this situation DMI initiated an R & D effort to develop methods in CFD to assess some of the basic hydrodynamic derivatives for a maneuvering ship.




Numerical Ship Hydrodynamics


Book Description

This book explores computational fluid dynamics applied to ship hydrodynamics and provides guidelines for the future developments in the field based on the Tokyo 2015 Workshop. It presents ship hull test cases, experimental data and submitted computational methods, conditions, grids and results. Analysis is made of errors for global (resistance, sinkage, trim and self-propulsion) and local flow (wave elevations, mean velocities and turbulence) variables, including standard deviations for global variables. The effects of grid size and turbulence models are evaluated for both global and local flow variables. Detailed analysis is made of turbulence modeling capabilities for capturing local flow physics. Errors and standard deviations are also assessed for added resistance (captive test cases) and course keeping/speed loss (free running test cases) in head and oblique waves. All submissions are used to evaluate the error and uncertainty by means of a systematic verification and validation (V&V) study along with statistical investigations.




Numerical Ship Hydrodynamics


Book Description

This book assesses the state-of-the-art in computational fluid dynamics (CFD) applied to ship hydrodynamics and provides guidelines for the future developments in the field based on the Gothenburg 2010 Workshop. It presents ship hull test cases, experimental data and submitted computational methods, conditions, grids and results. Analysis is made of errors for global (resistance, sinkage and trim and self-propulsion) and local flow (wave elevations and mean velocities and turbulence) variables, including standard deviations for global variables and propeller modeling for self-propulsion. The effects of grid size and turbulence models are evaluated for both global and local flow variables. Detailed analysis is made of turbulence modeling capabilities for capturing local flow physics. Errors are also analyzed for head-wave seakeeping and forward speed diffraction, and calm-water forward speed-roll decay. Resistance submissions are used to evaluate the error and uncertainty by means of a systematic verification and validation (V&V) study along with statistical investigations. Post-workshop experimental and computational studies are conducted and analyzed for evaluation of facility biases and to draw more concrete conclusions regarding the most reliable turbulence model, appropriate numerical methods and grid resolution requirements, respectively.







Twenty-Third Symposium on Naval Hydrodynamics


Book Description

"Vive la Revolution!" was the theme of the Twenty-Third Symposium on Naval Hydrodynamics held in Val de Reuil, France, from September 17-22, 2000 as more than 140 experts in ship design, construction, and operation came together to exchange naval research developments. The forum encouraged both formal and informal discussion of presented papers, and the occasion provides an opportunity for direct communication between international peers. This book includes sixty-three papers presented at the symposium which was organized jointly by the Office of Naval Research, the National Research Council (Naval Studies Board), and the Bassin d'Essais des Carènes. This book includes the ten topical areas discussed at the symposium: wave-induced motions and loads, hydrodynamics in ship design, propulsor hydrodynamics and hydroacoustics, CFD validation, viscous ship hydrodynamics, cavitation and bubbly flow, wave hydrodynamics, wake dynamics, shallow water hydrodynamics, and fluid dynamics in the naval context.




Shiphandling Simulation


Book Description

As a result of major shipping disasters on all coasts, the safety of vessel operations in U.S. ports and waterways and the effectiveness of waterway designs are under increased scrutiny. But are traditional waterway design practices that rely heavily on rules of thumb and conservatism providing adequate margins of safety while keeping the overall costs of waterway projects within the funding capabilities of local project sponsors? Shiphandling Simulation addresses how computer-based simulation can be used to improve the cost- effectiveness of waterway design while satisfying safety objectives. The book examines the role of computer simulation in improving waterway design, evaluates the adequacy of data input, explores the validity of hydrodynamic and mathematical models, assesses required and achievable accuracy of simulation results, and identifies research needed to establish shiphandling simulation as a standard design aid. Case studies of waterway design efforts employing shiphandling simulation are analyzed and lessons learned are identified.