Proceedings of the 3rd RILEM Spring Convention and Conference (RSCC 2020)


Book Description

This book gathers peer-reviewed contributions presented at the 3rd RILEM Spring Convention and Conference, held at Guimarães and hosted by the University of Minho, Portugal, on March 9-14, 2020. The theme of the Conference was “Ambitioning a Sustainable Future for Built Environment: comprehensive strategies for unprecedented challenges”, which was aimed at discussing current challenges and impacts of the built environment on sustainability. The present volume is dedicated to the topic “New materials and structures for ultra‐durability”, which covers current scientific and technological developments aimed at improving knowledge about degradation mechanisms in construction materials, as well as to the development of new materials with extreme durability. Novel special materials for extreme environments or extreme loading conditions are also included, as well as novel approaches to improve the performance and durability of currently common construction materials. The following subtopics are included: general purpose, constructions, infrastructures and facilities; extreme environments and extreme events; transport and deterioration mechanisms, characterization and mitigation; Supplementary Cementitious Materials, admixtures, additions and other emerging material optimization strategies; smart materials for durable structures.




Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics


Book Description

Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics reunites some of the most recent work from the French research group MeGe GDR (National Research Group on Multiscale and Multiphysics Couplings in Geo-Environmental Mechanics) on the theme of multi-scale and multi-physics modeling of geomaterials, with a special focus on micromechanical aspects. Its offers readers a glimpse into the current state of scientific knowledge in the field, together with the most up-to-date tools and methods of analysis available. Each chapter represents a study with a different viewpoint, alternating between phenomenological/micro-mechanically enriched and purely micromechanical approaches. Throughout the book, contributing authors will highlight advances in geomaterials modeling, while also pointing out practical implications for engineers. Topics discussed include multi-scale modeling of cohesive-less geomaterials, including multi-physical processes, but also the effects of particle breakage, large deformations on the response of the material at the specimen scale and concrete materials, together with clays as cohesive geomaterials. The book concludes by looking at some engineering problems involving larger scales. - Identifies contributions in the field of geomechanics - Focuses on multi-scale linkages at small scales - Presents numerical simulations by discrete elements and tools of homogenization or change of scale




Geo Jordan 2004


Book Description

GPP 1 contains 30 papers presented at Geo Jordan 2004, held in Irbid, Jordan, July 12-15, 2004.




Atomistic Simulation of Anistropic Crystal Structures at Nanoscale


Book Description

Multiscale simulations of atomistic/continuum coupling in computational materials science, where the scale expands from macro-/micro- to nanoscale, has become a hot research topic. These small units, usually nanostructures, are commonly anisotropic. The development of molecular modeling tools to describe and predict the mechanical properties of structures reveals an undeniable practical importance. Typical anisotropic structures (e.g. cubic, hexagonal, monoclinic) using DFT, MD, and atomic finite element methods are especially interesting, according to the modeling requirement of upscaling structures. It therefore connects nanoscale modeling and continuous patterns of deformation behavior by identifying relevant parameters from smaller to larger scales. These methodologies have the prospect of significant applications. I would like to recommend this book to both beginners and experienced researchers.




Computational Modelling of Concrete Structures


Book Description

The EURO-C conference series (Split 1984, Zell am See 1990, Innsbruck 1994, Badgastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018) brings together researchers and practising engineers concerned with theoretical, algorithmic and validation aspects associated with computational simulations of concrete and concrete structures. Computational Modelling of Concrete Structures reviews and discusses research advancements and the applicability and robustness of methods and models for reliable analysis of complex concrete, reinforced concrete and pre-stressed concrete structures in engineering practice. The contributions cover both computational mechanics and computational modelling aspects of the analysis and design of concrete and concrete structures: Multi-scale cement and concrete research: experiments and modelling Aging concrete: from very early ages to decades-long durability Advances in material modelling of plain concrete Analysis of reinforced concrete structures Steel-concrete interaction, fibre-reinforced concrete, and masonry Dynamic behaviour: from seismic retrofit to impact simulation Computational Modelling of Concrete Structures is of special interest to academics and researchers in computational concrete mechanics, as well as industry experts in complex nonlinear simulations of concrete structures.




Numerical Modeling in Micromechanics via Particle Methods


Book Description

Particle methods have seen increasing use in several engineering and scientific fields, both because of their unique modelling capabilities and the availability of the necessary computational power. This title focuses on their theory and application.




Multiscale Modeling of Heterogenous Materials


Book Description

A material's various proprieties is based on its microscopic and nanoscale structures. This book provides an overview of recent advances in computational methods for linking phenomena in systems that span large ranges of time and spatial scales. Particular attention is given to predicting macroscopic properties based on subscale behaviors. Given the book’s extensive coverage of multi-scale methods for modeling both metallic and geologic materials, it will be an invaluable reading for graduate students, scientists, and practitioners alike.




Production of Biofuels and Numerical Modeling of Chemical Combustion Systems


Book Description

Biofuels have recently attracted a lot of attention, mainly as alternative fuels for applications in energy generation and transportation. The utilization of biofuels in such controlled combustion processes has the great advantage of not depleting the limited resources of fossil fuels while leading to emissions of greenhouse gases and smoke particles similar to those of fossil fuels. On the other hand, a vast amount of biofuels are subjected to combustion in small-scale processes, such as for heating and cooking in residential dwellings, as well as in agricultural operations, such as crop residue removal and land clearing. In addition, large amounts of biomass are consumed annually during forest and savanna fires in many parts of the world. These types of burning processes are typically uncontrolled and unregulated. Consequently, the emissions from these processes may be larger compared to industrial-type operations. Aside from direct effects on human health, especially due to a sizeable fraction of the smoke emissions remaining inside residential homes, the smoke particles and gases released from uncontrolled biofuel combustion impose significant effects on the regional and global climate. Estimates have shown the majority of carbonaceous airborne particulate matter to be derived from the combustion of biofuels and biomass. “Production of Biofuels and Numerical Modelling of Chemical Combustion Systems” comprehensively overviews and includes in-depth technical research papers addressing recent progress in biofuel production and combustion processes. To be specific, this book contains sixteen high-quality studies (fifteen research papers and one review paper) addressing techniques and methods for bioenergy and biofuel production as well as challenges in the broad area of process modelling and control in combustion processes.




Virtual Materials Design


Book Description




The Engineering Index Annual


Book Description

Since its creation in 1884, Engineering Index has covered virtually every major engineering innovation from around the world. It serves as the historical record of virtually every major engineering innovation of the 20th century. Recent content is a vital resource for current awareness, new production information, technological forecasting and competitive intelligence. The world?s most comprehensive interdisciplinary engineering database, Engineering Index contains over 10.7 million records. Each year, over 500,000 new abstracts are added from over 5,000 scholarly journals, trade magazines, and conference proceedings. Coverage spans over 175 engineering disciplines from over 80 countries. Updated weekly.